IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.03004.html
   My bibliography  Save this paper

Hybrid scheme for Brownian semistationary processes

Author

Listed:
  • Mikkel Bennedsen
  • Asger Lunde
  • Mikko S. Pakkanen

Abstract

We introduce a simulation scheme for Brownian semistationary processes, which is based on discretizing the stochastic integral representation of the process in the time domain. We assume that the kernel function of the process is regularly varying at zero. The novel feature of the scheme is to approximate the kernel function by a power function near zero and by a step function elsewhere. The resulting approximation of the process is a combination of Wiener integrals of the power function and a Riemann sum, which is why we call this method a hybrid scheme. Our main theoretical result describes the asymptotics of the mean square error of the hybrid scheme and we observe that the scheme leads to a substantial improvement of accuracy compared to the ordinary forward Riemann-sum scheme, while having the same computational complexity. We exemplify the use of the hybrid scheme by two numerical experiments, where we examine the finite-sample properties of an estimator of the roughness parameter of a Brownian semistationary process and study Monte Carlo option pricing in the rough Bergomi model of Bayer et al. [Quant. Finance 16(6), 887-904, 2016], respectively.

Suggested Citation

  • Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
  • Handle: RePEc:arx:papers:1507.03004
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.03004
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2014. "Discretization of Lévy semistationary processes with application to estimation," CREATES Research Papers 2014-21, Department of Economics and Business Economics, Aarhus University.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    3. Hu, Yaozhong & Nualart, David & Song, Xiaoming, 2008. "A singular stochastic differential equation driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2075-2085, October.
    4. Corcuera, José Manuel & Hedevang, Emil & Pakkanen, Mikko S. & Podolskij, Mark, 2013. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2552-2574.
    5. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    6. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    2. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.
    3. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," CREATES Research Papers 2015-43, Department of Economics and Business Economics, Aarhus University.
    4. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," CREATES Research Papers 2016-15, Department of Economics and Business Economics, Aarhus University.
    5. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    6. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    7. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    8. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    9. Ole E. Barndorff-Nielsen & Mikko S. Pakkanen & Jürgen Schmiegel, 2013. "Assessing Relative Volatility/Intermittency/Energy Dissipation," CREATES Research Papers 2013-15, Department of Economics and Business Economics, Aarhus University.
    10. Mark Podolskij & Nopporn Thamrongrat, 2015. "A weak limit theorem for numerical approximation of Brownian semi-stationary processes," CREATES Research Papers 2015-53, Department of Economics and Business Economics, Aarhus University.
    11. Sauri, Orimar & Veraart, Almut E.D., 2017. "On the class of distributions of subordinated Lévy processes and bases," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 475-496.
    12. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2014. "Discretization of Lévy semistationary processes with application to estimation," CREATES Research Papers 2014-21, Department of Economics and Business Economics, Aarhus University.
    13. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    14. Mark Podolskij, 2014. "Ambit fields: survey and new challenges," CREATES Research Papers 2014-51, Department of Economics and Business Economics, Aarhus University.
    15. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    16. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    17. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    18. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    19. Huy N. Chau & Miklos Rasonyi, 2016. "On optimal investment with processes of long or negative memory," Papers 1608.00768, arXiv.org, revised Mar 2017.
    20. Almut E. D. Veraart & Luitgard A. M. Veraart, 2013. "Risk premia in energy markets," CREATES Research Papers 2013-02, Department of Economics and Business Economics, Aarhus University.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.03004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.