IDEAS home Printed from https://ideas.repec.org/p/aah/create/2016-21.html
   My bibliography  Save this paper

Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data

Author

Listed:
  • Mikkel Bennedsen

    () (Aarhus University and CREATES)

Abstract

Using theory on (conditionally) Gaussian processes with stationary increments developed in Barndorff-Nielsen et al. (2009, 2011), this paper presents a general semiparametric approach to conducting inference on the fractal index, a, of a time series. Our setup encompasses a large class of Gaussian processes and we show how to extend it to a large class of non-Gaussian models as well. It is proved that the asymptotic distribution of the estimator of a does not depend on the specifics of the data generating process for the observations, but only on the value of a and a “heteroscedasticity” factor. Using this, we propose a simulation-based approach to inference, which is easily implemented and is valid more generally than asymptotic analysis. We detail how the methods can be applied to test whether a stochastic process is a non-semimartingale. Finally, the methods are illustrated in two empirical applications motivated from finance. We study time series of log-prices and log-volatility from 29 individual US stocks; no evidence of non-semimartingality in asset prices is found, but we do find evidence of non-semimartingality in volatility. This confirms a recently proposed conjecture that stochastic volatility processes of financial assets are rough (Gatheral et al., 2014).

Suggested Citation

  • Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2016-21
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/16/rp16_21.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," CREATES Research Papers 2015-43, Department of Economics and Business Economics, Aarhus University.
    2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
    3. Pilar Grau-Carles, 2005. "Tests of Long Memory: A Bootstrap Approach," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 103-113, February.
    4. Ole E. Barndorff-Nielsen, 2016. "Assessing Gamma kernels and BSS/LSS processes," CREATES Research Papers 2016-09, Department of Economics and Business Economics, Aarhus University.
    5. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    6. S. Davies & P. Hall, 1999. "Fractal analysis of surface roughness by using spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 3-37.
    7. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(03), pages 361-376, June.
    8. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    9. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    10. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    11. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    12. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
    13. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    14. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    15. Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
    16. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
    17. Almut E. D. Veraart & Luitgard A. M. Veraart, 2012. "Modelling electricity day–ahead prices by multivariate Lévy semistationary processes," CREATES Research Papers 2012-13, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 0808. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    2. repec:eee:eneeco:v:63:y:2017:i:c:p:301-313 is not listed on IDEAS
    3. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jul 2017.

    More about this item

    Keywords

    Fractal index; Monte Carlo simulation; roughness; semimartingality; fractional Brownian motion; stochastic volatility JEL Classification: C12; C22; C63; G12 MSC 2010 Classification: 60G10; 60G15; 60G17; 60G22; 62M07; 62M09; 65C05;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2016-21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.