IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1307.6332.html
   My bibliography  Save this paper

Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes

Author

Listed:
  • Ole E. Barndorff-Nielsen
  • Fred Espen Benth
  • Almut E. D. Veraart

Abstract

This paper introduces the class of volatility modulated L\'{e}vy-driven Volterra (VMLV) processes and their important subclass of L\'{e}vy semistationary (LSS) processes as a new framework for modelling energy spot prices. The main modelling idea consists of four principles: First, deseasonalised spot prices can be modelled directly in stationarity. Second, stochastic volatility is regarded as a key factor for modelling energy spot prices. Third, the model allows for the possibility of jumps and extreme spikes and, lastly, it features great flexibility in terms of modelling the autocorrelation structure and the Samuelson effect. We provide a detailed analysis of the probabilistic properties of VMLV processes and show how they can capture many stylised facts of energy markets. Further, we derive forward prices based on our new spot price models and discuss option pricing. An empirical example based on electricity spot prices from the European Energy Exchange confirms the practical relevance of our new modelling framework.

Suggested Citation

  • Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
  • Handle: RePEc:arx:papers:1307.6332
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1307.6332
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Claudia Kluppelberg & Thilo Meyer-Brandis & Andrea Schmidt, 2010. "Electricity spot price modelling with a view towards extreme spike risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 963-974.
    2. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    3. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    4. Wolfgang Härdle & Brenda López Cabrera, 2009. "Implied Market Price of Weather Risk," SFB 649 Discussion Papers SFB649DP2009-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Markus Burger & Bernhard Klar & Alfred Muller & Gero Schindlmayr, 2004. "A spot market model for pricing derivatives in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 109-122.
    6. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    7. Ole E. Barndorff–Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2010. "Modelling electricity forward markets by ambit fields," CREATES Research Papers 2010-41, Department of Economics and Business Economics, Aarhus University.
    8. Fred Benth & Wolfgang Karl Härdle & Brenda López Cabrera, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers SFB649DP2009-046, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Ole E. Barndorff–Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2010. "Ambit processes and stochastic partial differential equations," CREATES Research Papers 2010-17, Department of Economics and Business Economics, Aarhus University.
    10. Samuel Hikspoors & Sebastian Jaimungal, 2008. "Asymptotic Pricing of Commodity Derivatives using Stochastic Volatility Spot Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 449-477.
    11. Schwartz, Eduardo S, 1997. " The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    12. Brockwell, Peter J. & Davis, Richard A. & Yang, Yu, 2011. "Estimation for Non-Negative Lévy-Driven CARMA Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 250-259.
    13. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    14. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501.
    15. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    16. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.
    17. Almut E. D. Veraart & Luitgard A. M. Veraart, 2012. "Modelling electricity day–ahead prices by multivariate Lévy semistationary processes," CREATES Research Papers 2012-13, Department of Economics and Business Economics, Aarhus University.
    18. Paolo Guasoni & Mikl'os R'asonyi & Walter Schachermayer, 2008. "Consistent price systems and face-lifting pricing under transaction costs," Papers 0803.4416, arXiv.org.
    19. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2012. "Stochastic Volatility of Volatility and Variance Risk Premia," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(1), pages 1-46, December.
    20. Basse, Andreas & Pedersen, Jan, 2009. "Lévy driven moving averages and semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2970-2991, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.6332. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.