IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Using Affine Jump Diffusion Models for Modelling and Pricing Electricity Derivatives

  • N. K. Nomikos
  • O. Soldatos
Registered author(s):

    A seasonal affine jump diffusion spike model with regime switching in the long-run equilibrium level is applied to model spot and forward prices in the Scandinavian power market. The spike part of the model incorporates different coefficients of mean reversion in the spike and normal variables and thus improves the spot-forward relationship, particularly at time periods when spikes occur. The regime switching part of the model contains two separate regimes to distinguish between periods of high and low water levels in the reservoirs, reflecting the availability of hydropower in the market. The performance of the models is compared with that of other models proposed in the literature in terms of fitting the observed term structure, as well as by generating simulated price paths that have the same statistical properties as the actual prices observed in the market. In particular, the model performs well in terms of capturing the spikes and explaining their fast mean reversion as well as in terms of reflecting the seasonal volatility observed in the market. These issues are very important for the pricing and hedging of derivative instruments.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860701427362
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

    Volume (Year): 15 (2008)
    Issue (Month): 1 ()
    Pages: 41-71

    as
    in new window

    Handle: RePEc:taf:apmtfi:v:15:y:2008:i:1:p:41-71
    Contact details of provider: Web page: http://www.tandfonline.com/RAMF20

    Order Information: Web: http://www.tandfonline.com/pricing/journal/RAMF20

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:15:y:2008:i:1:p:41-71. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.