IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v14y2007i2p153-169.html
   My bibliography  Save this article

A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing

Author

Listed:
  • Fred Espen Benth
  • Jan Kallsen
  • Thilo Meyer-Brandis

Abstract

A mean-reverting model is proposed for the spot price dynamics of electricity which includes seasonality of the prices and spikes. The dynamics is a sum of non-Gaussian Ornstein-Uhlenbeck processes with jump processes giving the normal variations and spike behaviour of the prices. The amplitude and frequency of jumps may be seasonally dependent. The proposed dynamics ensures that spot prices are positive, and that the dynamics is simple enough to allow for analytical pricing of electricity forward and futures contracts. Electricity forward and futures contracts have the distinctive feature of delivery over a period rather than at a fixed point in time, which leads to quite complicated expressions when using the more traditional multiplicative models for spot price dynamics. In a simulation example it is demonstrated that the model seems to be sufficiently flexible to capture the observed dynamics of electricity spot prices. The pricing of European call and put options written on electricity forward contracts is also discussed.

Suggested Citation

  • Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
  • Handle: RePEc:taf:apmtfi:v:14:y:2007:i:2:p:153-169
    DOI: 10.1080/13504860600725031
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860600725031
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860600725031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Jan Kallsen, 2000. "Optimal portfolios for exponential Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 357-374, August.
    3. Michael Sørensen, 2000. "Prediction-based estimating functions," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 123-147.
    4. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    2. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    3. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    4. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    5. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    6. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    7. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    8. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    9. Kallsen Jan & Muhle-Karbe Johannes, 2011. "Method of moment estimation in time-changed Lévy models," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 169-194, May.
    10. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    11. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    12. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    13. Catherine Doz & Eric Renault, 2004. "Conditionaly Heteroskedastic Factor Models : Identificationand Instrumental variables Estmation," THEMA Working Papers 2004-13, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    14. Genon-Catalot, Valentine & Laredo, Catherine, 2006. "Leroux's method for general hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 222-243, February.
    15. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    16. Xiaowei Zhang & Peter W. Glynn, 2018. "Affine Jump-Diffusions: Stochastic Stability and Limit Theorems," Papers 1811.00122, arXiv.org.
    17. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    18. Bollerslev, Tim & Zhou, Hao, 2004. "Corrigendum to "Estimating stochastic volatility diffusion using conditional moments of integrated volatility" [J. Econom. 109 (2002) 33-65]," Journal of Econometrics, Elsevier, vol. 119(1), pages 221-222, March.
    19. Bannör, Karl & Kiesel, Rüdiger & Nazarova, Anna & Scherer, Matthias, 2016. "Parametric model risk and power plant valuation," Energy Economics, Elsevier, vol. 59(C), pages 423-434.
    20. Anne Brix & Asger Lunde, 2015. "Prediction-based estimating functions for stochastic volatility models with noisy data: comparison with a GMM alternative," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 433-465, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:14:y:2007:i:2:p:153-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.