IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Realized Laplace Transforms for Estimation of Jump Diffusive Volatility Models

  • Viktor Todorov
  • Iaryna Grynkiv
  • George Tauchen

We develop a new efficient and analytically tractable method for estimation of parametric volatility models that is robust to price-level jumps and generally has good finite sample properties. The method entails first integrating intra-day data into the Realized Laplace Transform of volatility, which is a model-free and jump-robust estimate of daily integrated empirical Laplace transform of the unobservable volatility. The estimation then is done by matching moments of the integrated joint Laplace transform with those implied by various parametric volatility models. In the empirical application, the best fitting volatility model is a non-diffusive two-factor model where low activity jumps drive its persistent component and more active jumps drive the transient one.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://papers.ssrn.com/abstract=1687998
File Function: main text
Download Restriction: no

Paper provided by Duke University, Department of Economics in its series Working Papers with number 10-75.

as
in new window

Length: 38
Date of creation: 2010
Date of revision:
Handle: RePEc:duk:dukeec:10-75
Contact details of provider: Postal: Department of Economics Duke University 213 Social Sciences Building Box 90097 Durham, NC 27708-0097
Phone: (919) 660-1800
Fax: (919) 684-8974
Web page: http://econ.duke.edu/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
  2. Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.
  3. Damir Filipovi\'c & Eberhard Mayerhofer & Paul Schneider, 2011. "Density Approximations for Multivariate Affine Jump-Diffusion Processes," Papers 1104.5326, arXiv.org, revised Oct 2011.
  4. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(06), pages 797-834, December.
  5. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
  6. Viktor Todorov & George Tauchen, 2011. "Volatility Jumps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 356-371, July.
  7. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
  8. Dobrislav Dobrev & Pawel Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," International Finance Discussion Papers 1005, Board of Governors of the Federal Reserve System (U.S.).
  9. Nour Meddahi, 2002. "ARMA Representation of Integrated and Realized Variances," CIRANO Working Papers 2002s-93, CIRANO.
  10. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  11. Cecilia Mancini, 2009. "Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296.
  12. Dobrislav P. Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," Finance and Economics Discussion Series 2010-45, Board of Governors of the Federal Reserve System (U.S.).
  13. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  14. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Normal modified stable processes," Economics Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.
  15. Yacine Aït-Sahalia & Jean Jacod, 2008. "Fisher's Information for Discretely Sampled Lévy Processes," Econometrica, Econometric Society, vol. 76(4), pages 727-761, 07.
  16. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  17. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
  18. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  19. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
  20. Todorov, Viktor & Tauchen, George, 2010. "Activity signature functions for high-frequency data analysis," Journal of Econometrics, Elsevier, vol. 154(2), pages 125-138, February.
  21. George J. Jiang & John L. Knight, 2010. "ECF estimation of Markov models where the transition density is unknown," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 245-270, 07.
  22. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
  23. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
  24. Knight, John L. & Yu, Jun, 2002. "Empirical Characteristic Function In Time Series Estimation," Econometric Theory, Cambridge University Press, vol. 18(03), pages 691-721, June.
  25. Jun Yu, 2004. "Empirical Characteristic Function Estimation and Its Applications," Econometric Reviews, Taylor & Francis Journals, vol. 23(2), pages 93-123.
  26. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
  27. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  28. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
  29. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
  30. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:duk:dukeec:10-75. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Department of Economics Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.