IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i1d10.1007_s10959-020-01055-4.html
   My bibliography  Save this article

Large Deviation Principles of Realized Laplace Transform of Volatility

Author

Listed:
  • Xinwei Feng

    (Shandong University)

  • Lidan He

    (University of Macau)

  • Zhi Liu

    (Zhuhai-UM Science and Technology Research Institute)

Abstract

Under the scenario of high-frequency data, a consistent estimator of the realized Laplace transform of volatility is proposed by Todorov and Tauchen (Econometrica 80:1105–1127, 2012) and a related central limit theorem has been well established. In this paper, we investigate the asymptotic tail behaviour of the empirical realized Laplace transform of volatility (ERLTV). We establish both a large deviation principle and a moderate deviation principle for the ERLTV. The good rate function for the large deviation principle is well defined in the whole real space, which indicates a limit for the normalized logarithmic tail probability of the ERLTV. Moreover, we also derive the function-level large and moderate deviation principles for ERLTV.

Suggested Citation

  • Xinwei Feng & Lidan He & Zhi Liu, 2022. "Large Deviation Principles of Realized Laplace Transform of Volatility," Journal of Theoretical Probability, Springer, vol. 35(1), pages 186-208, March.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01055-4
    DOI: 10.1007/s10959-020-01055-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-01055-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-01055-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
    2. Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
    3. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    4. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    5. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    6. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    7. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    8. Renault, Eric & Sarisoy, Cisil & Werker, Bas J.M., 2017. "Efficient Estimation Of Integrated Volatility And Related Processes," Econometric Theory, Cambridge University Press, vol. 33(2), pages 439-478, April.
    9. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    10. Viktor Todorov & George Tauchen, 2011. "Inverse Realized Laplace Transforms for Nonparametric Volatility Estimation in Jump-Diffusions," Working Papers 11-21, Duke University, Department of Economics.
    11. Kanaya, Shin & Otsu, Taisuke, 2012. "Large deviations of realized volatility," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 546-581.
    12. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
    13. Viktor Todorov & George Tauchen, 2012. "The Realized Laplace Transform of Volatility," Econometrica, Econometric Society, vol. 80(3), pages 1105-1127, May.
    14. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    15. Hacène Djellout & Arnaud Guillin & Liming Wu, 1999. "Large and Moderate Deviations for Estimators of Quadratic Variational Processes of Diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 2(3), pages 195-225, October.
    16. Mancini, Cecilia, 2008. "Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 869-879, May.
    17. Djellout, Hacène & Samoura, Yacouba, 2014. "Large and moderate deviations of realized covolatility," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 30-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hacène Djellout & Hui Jiang, 2018. "Large Deviations of the Threshold Estimator of Integrated (Co-)Volatility Vector in the Presence of Jumps," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1606-1624, September.
    2. Hacène Djellout & Hui Jiang, 2018. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Post-Print hal-01147189, HAL.
    3. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    4. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
    5. Hacène Djellout & Hui Jiang, 2015. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Working Papers hal-01147189, HAL.
    6. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2014. "Large Deviations Of The Realized (Co-)Volatility Vector," Working Papers hal-01082903, HAL.
    7. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    8. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    9. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    10. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    11. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    12. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    13. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    14. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    15. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    16. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    17. Vassilios G. Papavassiliou, 2016. "Allowing For Jump Measurements In Volatility: A High-Frequency Financial Data Analysis Of Individual Stocks," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 124-132, April.
    18. Stavros Degiannakis, George Filis, and Renatas Kizys, 2014. "The Effects of Oil Price Shocks on Stock Market Volatility: Evidence from European Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    20. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01055-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.