IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Large deviations of realized volatility

  • Kanaya, Shin
  • Otsu, Taisuke

This paper studies large and moderate deviation properties of a realized volatility statistic of high frequency financial data. We establish a large deviation principle for the realized volatility when the number of high frequency observations in a fixed time interval increases to infinity. Our large deviation result can be used to evaluate tail probabilities of the realized volatility. We also derive a moderate deviation rate function for a standardized realized volatility statistic. The moderate deviation result is useful for assessing the validity of normal approximations based on the central limit theorem. In particular, it clarifies that there exists a trade-off between the accuracy of the normal approximations and the path regularity of an underlying volatility process. Our large and moderate deviation results complement the existing asymptotic theory on high frequency data. In addition, the paper contributes to the literature of large deviation theory in that the theory is extended to a high frequency data environment.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304414911002250
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Stochastic Processes and their Applications.

Volume (Year): 122 (2012)
Issue (Month): 2 ()
Pages: 546-581

as
in new window

Handle: RePEc:eee:spapps:v:122:y:2012:i:2:p:546-581
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description

Order Information: Postal: http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/OOC/InitController?id=505572&ref=505572_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kim Christensen & Roel Oomen & Mark Podolskij, 2010. "Realised quantile-based estimation of the integrated variance," Post-Print hal-00732538, HAL.
  2. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," Review of Economic Studies, Oxford University Press, vol. 75(2), pages 339-369.
  3. Torben G. Andersen & Tim Bollerslev & Dobrislav Dobrev, 2007. "No-Arbitrage Semi-Martingale Restrictions for Continuous-Time Volatility Models subject to Leverage Effects, Jumps and i.i.d. Noise: Theory and Testable Distributional Implications," NBER Working Papers 12963, National Bureau of Economic Research, Inc.
  4. Grama, Ion & Haeusler, Erich, 2000. "Large deviations for martingales via Cramér's method," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 279-293, February.
  5. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
  6. Neil Shephard & Ole E. Barndorff-Nielsen, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Series Working Papers 2006-W03, University of Oxford, Department of Economics.
  7. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2005. "Edgeworth Expansions for Realized Volatility and Related Estimators," NBER Technical Working Papers 0319, National Bureau of Economic Research, Inc.
  8. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  9. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
  10. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, 01.
  11. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," Economics Papers 2005-W06, Economics Group, Nuffield College, University of Oxford.
  12. repec:oxf:wpaper:264 is not listed on IDEAS
  13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  14. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.
  15. Lesigne, Emmanuel & Volný, Dalibor, 2001. "Large deviations for martingales," Stochastic Processes and their Applications, Elsevier, vol. 96(1), pages 143-159, November.
  16. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  17. Neil Shephard & Ole E. Barndorff-Nielsen, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Series Working Papers 2003-W18, University of Oxford, Department of Economics.
  18. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
  19. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
  20. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Papers 2005-W07, Economics Group, Nuffield College, University of Oxford.
  21. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412.
  22. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  23. Bercu, B. & Gamboa, F. & Rouault, A., 1997. "Large deviations for quadratic forms of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 71(1), pages 75-90, October.
  24. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  25. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  26. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
  27. Meddahi, Nour & Mykland, Per & Shephard, Neil, 2011. "Realized Volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 1-1, January.
  28. repec:fth:inseep:9607 is not listed on IDEAS
  29. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  30. Sílvia Gonçalves & Nour Meddahi, 2009. "Bootstrapping Realized Volatility," Econometrica, Econometric Society, vol. 77(1), pages 283-306, 01.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:2:p:546-581. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.