IDEAS home Printed from https://ideas.repec.org/p/sbs/wpsefe/2005fe08.html

Variation, jumps, market frictions and high frequency data in financial econometrics

Author

Listed:
  • Ole E. Barndorff-Nielsen
  • Neil Shephard

Abstract

We will review the econometrics of non-parametric estimation of the components of the variation of asset prices. This very active literature has been stimulated by the recent advent of complete records of transaction prices, quote data and order books. In our view the interaction of the new data sources with new econometric methodology is leading to a paradigm shift in one of the most important areas in econometrics: volatility measurement, modelling and forecasting. We will describe this new paradigm which draws together econometrics with arbitrage free financial economics theory. Perhaps the two most influential papers in this area have been Andersen, Bollerslev, Diebold and Labys(2001) and Barndorff-Nielsen and Shephard(2002), but many other papers have made important contributions. This work is likely to have deep impacts on the econometrics of asset allocation and risk management. One of our observations will be that inferences based on these methods, computed from observed market prices and so under the physical measure, are also valid as inferences under all equivalent measures. This puts this subject also at the heart of the econometrics of derivative pricing. One of the most challenging problems in this context is dealing with various forms of market frictions, which obscure the efficient price from the econometrician. Here we will characterise four types of statistical models of frictions and discuss how econometricians have been attempting to overcome them.

Suggested Citation

  • Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
  • Handle: RePEc:sbs:wpsefe:2005fe08
    as

    Download full text from publisher

    File URL: http://www.finance.ox.ac.uk/file_links/finecon_papers/2005fe08.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bence Toth & Janos Kertesz, 2009. "The Epps effect revisited," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 793-802.
    2. Chaboud, Alain P. & Chiquoine, Benjamin & Hjalmarsson, Erik & Loretan, Mico, 2010. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 212-240, March.
    3. Xinhong Lu & Ken-Ichi Kawai & Koichi Maekawa, 2010. "Estimating Bivariate Garch-Jump Model Based On High Frequency Data: The Case Of Revaluation Of The Chinese Yuan In July 2005," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(02), pages 287-300.
    4. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    5. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    6. Yi, Chae-Deug, 2020. "Jump probability using volatility periodicity filters in US Dollar/Euro exchange rates," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    7. Gael M. Martin & Andrew Reidy & Jill Wright, 2006. "Assessing the Impact of Market Microstructure Noise and Random Jumps on the Relative Forecasting Performance of Option-Implied and Returns-Based Volatility," Monash Econometrics and Business Statistics Working Papers 10/06, Monash University, Department of Econometrics and Business Statistics.
    8. Aktham Maghyereh & Hussein Abdoh, 2022. "COVID-19 and the volatility interlinkage between bitcoin and financial assets," Empirical Economics, Springer, vol. 63(6), pages 2875-2901, December.
    9. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    10. Chae-Deug, Yi, 2024. "Realized normal volatility and maximum outlying jumps in high frequency returns for Korean won–US Dollar," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    11. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Peter C. B. Phillips & Jun Yu, 2024. "Information loss in volatility measurement with flat price trading," Advanced Studies in Theoretical and Applied Econometrics, in: Subal C. Kumbhakar & Robin C. Sickles & Hung-Jen Wang (ed.), Advances in Applied Econometrics, pages 501-543, Springer.
    13. Jeremy Large, 2005. "Estimating Quadratic Variation When Quoted Prices Jump by a Constant Increment," Economics Series Working Papers 2005-FE-05, University of Oxford, Department of Economics.
    14. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    15. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    16. Irving Fisher Committee, 2005. "Proceedings of the Bank of Canada/IFC Workshop on "Data requirements for analysing the stability and vulnerability of mature financial systems", Ottawa, June 2005," IFC Bulletins, Bank for International Settlements, number 23.
    17. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    18. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    19. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, March.
    20. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    21. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2005fe08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://edirc.repec.org/data/frcoxuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.