IDEAS home Printed from https://ideas.repec.org/p/skb/wpaper/cofie-01-2008.html

Information Loss in Volatility Measurement with Flat Price Trading

Author

Listed:
  • Peter C.B.Phillips

    (Yale University, University of Auckland,University of York & Singapore Management University)

  • Jun Yu

    (Sim Kee Boon Institute for Financial Economics, Singapore Management University)

Abstract

A model of financial asset price determination is proposed that incorporates flat trading features into an e¡é cient price process. The model involves the superposition of a Brownian semimartin- gale process for the efficient price and a Bernoulli process that determines the extent of flat price trading. The approach is related to sticky price modeling and the Calvo pricing mecha- nism in macroeconomic dynamics. A limit theory for the conventional realized volatility (RV) measure of integrated volatility is developed. The results show that RV is still consistent but has an inflated asymptotic variance that depends on the probability of flat trading. Estimated quarticity is similarly affected, so that both the feasible central limit theorem and the infer- ential framework suggested in Barndorff-Nielson and Shephard (2002) remain valid under flat price trading even though there is information loss due to flat trading e¡èects. The results are related to work by Jacod (1993) and Mykland and Zhang (2006) on realized volatility measures with random and intermittent sampling, and to ACD models for irregularly spaced transac- tions data. Extensions are given to include models with microstructure noise. Some simulation results are reported. Empirical evaluations with tick-by-tick data indicate that the effect of flat trading on the limit theory under microstructure noise is likely to be minor in most cases, thereby affirming the relevance of existing approaches.

Suggested Citation

  • Peter C.B.Phillips & Jun Yu, 2008. "Information Loss in Volatility Measurement with Flat Price Trading," Working Papers CoFie-01-2008, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
  • Handle: RePEc:skb:wpaper:cofie-01-2008
    as

    Download full text from publisher

    File URL: http://www.smu.edu.sg/institutes/skbife/downloads/CoFiE/Working%20Papers/Information%20Loss%20in%20Volatility%20Measurement%20with%20Flat%20Price%20Trading.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2020. "Statistical inferences for price staleness," Journal of Econometrics, Elsevier, vol. 218(1), pages 32-81.
    2. Huang, Shirley J. & Yu, Jun, 2010. "Bayesian analysis of structural credit risk models with microstructure noises," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2259-2272, November.
    3. Peter C. B. Phillips & Jun Yu, 2024. "Information loss in volatility measurement with flat price trading," Advanced Studies in Theoretical and Applied Econometrics, in: Subal C. Kumbhakar & Robin C. Sickles & Hung-Jen Wang (ed.), Advances in Applied Econometrics, pages 501-543, Springer.
    4. Ying Jiang & Shamim Ahmed & Xiaoquan Liu, 2017. "Volatility forecasting in the Chinese commodity futures market with intraday data," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 1123-1173, May.
    5. Bandi, Federico M. & Pirino, Davide & Renò, Roberto, 2024. "Systematic staleness," Journal of Econometrics, Elsevier, vol. 238(1).
    6. Federico M. Bandi & Aleksey Kolokolov & Davide Pirino & Roberto Renòo, 2020. "Zeros," Management Science, INFORMS, vol. 66(8), pages 3466-3479, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:skb:wpaper:cofie-01-2008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jaymie Xu (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.