IDEAS home Printed from https://ideas.repec.org/p/sbs/wpsefe/2006fe06.html

Subsampling realised kernels

Author

Listed:
  • Ole E. Barndorff-Nielsen

  • Peter R. Hansen

  • Asger Lunde

  • Neil Shephard

Abstract

In a recent paper we have introduced the class of realised kernel estimators of the increments of quadratic variation in the presence of noise. We showed that this estimator is consistent and derived its limit distribution under various assumptions on the kernel weights. In this paper we extend our analysis, looking at the class of subsampled realised kernels and we derive the limit theory for this class of estimators. We find that subsampling is highly advantageous for estimators based on discontinuous kernels, such as the truncated kernel. For kinked kernels, such as the Bartlett kernel, we show that subsampling is impotent, in the sense that subsampling has no effect on the asymptotic distribution. Perhaps surprisingly, for the efficient smooth kernels, such as the Parzen kernel, we show that subsampling is harmful as it increases the asymptotic variance. We also study the performance of subsampled realised kernels in simulations and in empirical work.

Suggested Citation

  • Ole E. Barndorff-Nielsen & Peter R. Hansen & Asger Lunde & Neil Shephard, 2006. "Subsampling realised kernels," OFRC Working Papers Series 2006fe06, Oxford Financial Research Centre.
  • Handle: RePEc:sbs:wpsefe:2006fe06
    as

    Download full text from publisher

    File URL: http://www.finance.ox.ac.uk/file_links/finecon_papers/2006fe06.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2006fe06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://edirc.repec.org/data/frcoxuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.