IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications

  • Andersen, Torben G.
  • Bollerslev, Tim
  • Dobrev, Dobrislav

We develop a sequential procedure to test the adequacy of jump-diffusion models for return distributions. We rely on intraday data and nonparametric volatility measures, along with a new jump detection technique and appropriate conditional moment tests, for assessing the import of jumps and leverage effects. A novel robust-to-jumps approach is utilized to alleviate microstructure frictions for realized volatility estimation. Size and power of the procedure are explored through Monte Carlo methods. Our empirical findings support the jump-diffusive representation for S&P500 futures returns but reveal it is critical to account for leverage effects and jumps to maintain the underlying semi-martingale assumption.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(06)00091-1
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 138 (2007)
Issue (Month): 1 (May)
Pages: 125-180

as
in new window

Handle: RePEc:eee:econom:v:138:y:2007:i:1:p:125-180
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  2. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-21, March.
  3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2002. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," NBER Working Papers 8959, National Bureau of Economic Research, Inc.
  4. Neil Shephard & Ole E. Barndorff-Nielsen, 2002. "Estimating quadratic variation using realised variance," Economics Series Working Papers 2001-W20, University of Oxford, Department of Economics.
  5. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
  6. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382.
  7. Gallant, A. Ronald & Hsu, Chien-Te & Tauchen, George, 2000. "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," Working Papers 00-04, Duke University, Department of Economics.
  8. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
  9. Harris, Lawrence, 1986. "A transaction data study of weekly and intradaily patterns in stock returns," Journal of Financial Economics, Elsevier, vol. 16(1), pages 99-117, May.
  10. Christian BONTEMPS & Nour MEDDAHI, 2002. "Testing Normality : A Gmm Approach," Cahiers de recherche 14-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  11. Geert Bekaert & Guojun Wu, 1997. "Asymmetric Volatility and Risk in Equity Markets," NBER Working Papers 6022, National Bureau of Economic Research, Inc.
  12. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
  14. Comte, F. & Renault, E., 1996. "Long Memory in Continuous Time Stochastic Volatility Models," Papers 96.406, Toulouse - GREMAQ.
  15. repec:ltr:wpaper:1999.01 is not listed on IDEAS
  16. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, 01.
  17. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
  18. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  19. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, 06.
  20. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
  21. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  22. Yacine Ait-Sahalia & Per A. Mykland, 2003. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," NBER Working Papers 9611, National Bureau of Economic Research, Inc.
  23. Bollen, Bernard & Inder, Brett, 2002. "Estimating daily volatility in financial markets utilizing intraday data," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 551-562, December.
  24. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  25. Andersen, Torben G, 1996. " Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
  26. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Analytic Evaluation of Volatility Forecasts," CIRANO Working Papers 2002s-90, CIRANO.
  27. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  28. Wood, Robert A & McInish, Thomas H & Ord, J Keith, 1985. " An Investigation of Transactions Data for NYSE Stocks," Journal of Finance, American Finance Association, vol. 40(3), pages 723-39, July.
  29. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 2002. "Alternative Models for Stock Price Dynamics," CIRANO Working Papers 2002s-58, CIRANO.
  30. Fulvio Corsi & Gilles Zumbach & Ulrich A. Muller & Michel M. Dacorogna, 2001. "Consistent High-precision Volatility from High-frequency Data," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 183-204, 07.
  31. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  32. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
  33. MEDDAHI, Nour, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Universite de Montreal, Departement de sciences economiques.
  34. Drost, Feike C & Nijman, Theo E & Werker, Bas J M, 1998. "Estimation and Testing in Models Containing Both Jump and Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 237-43, April.
  35. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  36. John M. Maheu & Thomas H. McCurdy, 2003. "News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns," CIRANO Working Papers 2003s-38, CIRANO.
  37. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
  38. Laszlo Gillemot & J. Doyne Farmer & Fabrizio Lillo, 2005. "There's more to volatility than volume," Papers physics/0510007, arXiv.org.
  39. Zhou, Bin, 1996. "High-Frequency Data and Volatility in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 45-52, January.
  40. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
  41. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
  42. Nelson, Daniel B., 1992. "Filtering and forecasting with misspecified ARCH models I : Getting the right variance with the wrong model," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 61-90.
  43. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  44. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Vega, Clara, 2004. "Real-time price discovery in stock, bond and foreign exchange markets," CFS Working Paper Series 2004/19, Center for Financial Studies (CFS).
  45. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  46. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(01), pages 53-65, March.
  47. Oomen, Roel C.A., 2006. "Properties of Realized Variance Under Alternative Sampling Schemes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 219-237, April.
  48. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  49. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  50. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
  51. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  52. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-89, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:138:y:2007:i:1:p:125-180. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.