IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v18y2002i03p691-721_18.html
   My bibliography  Save this article

Empirical Characteristic Function In Time Series Estimation

Author

Listed:
  • Knight, John L.
  • Yu, Jun

Abstract

Since the empirical characteristic function is the Fourier transformation of the emipirical distribution function, it retains all the information in the sample but can overcome difficulties arising from the likelihood. This paper discusses an estimation method using the empirical characteristic function for stationary processes. Under some regularity conditions, the resulting estimators are shown to be consistent and asymptotically normal. The method is applied to estimate Gaussion ARMA models. The optimal weight functions and estimating equations are given for in detail. Monte Carlo evidence shows that thc empirical characteristic function method can work as well as the exact maximum likelihood method and outperforms the conditional maximum likelihood method.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Knight, John L. & Yu, Jun, 2002. "Empirical Characteristic Function In Time Series Estimation," Econometric Theory, Cambridge University Press, vol. 18(03), pages 691-721, June.
  • Handle: RePEc:cup:etheor:v:18:y:2002:i:03:p:691-721_18
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S026646660218306X
    File Function: link to article abstract page
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
    2. Dinghai Xu & John Knight & Tony S. Wirjanto, 2011. "Asymmetric Stochastic Conditional Duration Model--A Mixture-of-Normal Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(3), pages 469-488, Summer.
    3. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    4. Dinghai Xu & John Knight, 2011. "Continuous Empirical Characteristic Function Estimation of Mixtures of Normal Parameters," Econometric Reviews, Taylor & Francis Journals, vol. 30(1), pages 25-50.
    5. Pierre Chausse & Dinghai Xu, 2012. "GMM Estimation of a Stochastic Volatility Model with Realized Volatility: A Monte Carlo Study," Working Papers 1203, University of Waterloo, Department of Economics, revised May 2012.
    6. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    7. Ishioka, Takahide & Kawamura, Shunsuke & Amano, Tomoyuki & Taniguchi, Masanobu, 2009. "Spectral analysis for intrinsic time processes," Statistics & Probability Letters, Elsevier, vol. 79(23), pages 2389-2396, December.
    8. Jentsch, Carsten & Leucht, Anne & Meyer, Marco & Beering, Carina, 2016. "Empirical characteristic functions-based estimation and distance correlation for locally stationary processes," Working Papers 16-15, University of Mannheim, Department of Economics.
    9. Chihwa Kao & Yongmiao Hong, 2004. "Detecting Neglected Nonlinearity in Dynamic Panel Data with Time-Varying Conditional Heteroskedasticity," Econometric Society 2004 Far Eastern Meetings 753, Econometric Society.
    10. Kotchoni, Rachidi, 2014. "The indirect continuous-GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 464-488.
    11. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    12. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
    13. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    14. Tsionas, Efthymios G., 2012. "Maximum likelihood estimation of stochastic frontier models by the Fourier transform," Journal of Econometrics, Elsevier, vol. 170(1), pages 234-248.
    15. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    16. John Knight & Stephen Satchell, 2008. "Testing for infinite order stochastic dominance with applications to finance, risk and income inequality," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 32(1), pages 35-46, January.
    17. Robert Elliott & Carlton-James Osakwe, 2006. "Option Pricing for Pure Jump Processes with Markov Switching Compensators," Finance and Stochastics, Springer, vol. 10(2), pages 250-275, April.
    18. Michael Rockinger & Maria Semenova, 2005. "Estimation of Jump-Diffusion Process vis Empirical Characteristic Function," FAME Research Paper Series rp150, International Center for Financial Asset Management and Engineering.
    19. Maria P. Braun & Simos G. Meintanis & Viatcheslav B. Melas, 2008. "Optimal Design Approach to GMM Estimation of Parameters Based on Empirical Transforms," International Statistical Review, International Statistical Institute, vol. 76(3), pages 387-400, December.
    20. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    21. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
    22. Dinghai Xu, 2012. "Continuous Empirical Characteristic Function Estimation of GARCH Models," Working Papers 1204, University of Waterloo, Department of Economics, revised May 2012.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:18:y:2002:i:03:p:691-721_18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.