IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.02098.html
   My bibliography  Save this paper

The Zumbach effect under rough Heston

Author

Listed:
  • Omar El Euch
  • Jim Gatheral
  • Radov{s} Radoiv{c}i'c
  • Mathieu Rosenbaum

Abstract

Previous literature has identified an effect, dubbed the Zumbach effect, that is nonzero empirically but conjectured to be zero in any conventional stochastic volatility model. Essentially this effect corresponds to the property that past squared returns forecast future volatilities better than past volatilities forecast future squared returns. We provide explicit computations of the Zumbach effect under rough Heston and show that they are consistent with empirical estimates. In agreement with previous conjectures however, the Zumbach effect is found to be negligible in the classical Heston model.

Suggested Citation

  • Omar El Euch & Jim Gatheral & Radov{s} Radoiv{c}i'c & Mathieu Rosenbaum, 2018. "The Zumbach effect under rough Heston," Papers 1809.02098, arXiv.org.
  • Handle: RePEc:arx:papers:1809.02098
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.02098
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Abi Jaber & Omar El Euch, 2018. "Markovian structure of the Volterra Heston model," Working Papers hal-01716696, HAL.
    2. P. Blanc & J. Donier & J.-P. Bouchaud, 2017. "Quadratic Hawkes processes for financial prices," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 171-188, February.
    3. Rémy Chicheportiche & Jean-Philippe Bouchaud, 2014. "The fine-structure of volatility feedback I: Multi-scale self-reflexivity," Post-Print hal-00722261, HAL.
    4. Jim Gatheral & Roel Oomen, 2010. "Zero-intelligence realized variance estimation," Finance and Stochastics, Springer, vol. 14(2), pages 249-283, April.
    5. Gilles Zumbach, 2009. "Time reversal invariance in finance," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 505-515.
    6. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    7. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Papers cond-mat/0501292, arXiv.org.
    8. Gilles Zumbach, 2004. "Volatility processes and volatility forecast with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 70-86.
    9. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    10. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.
    11. Zumbach, Gilles & Lynch, Paul, 2001. "Heterogeneous volatility cascade in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 521-529.
    12. Paul Lynch & Gilles Zumbach, 2003. "Market heterogeneities and the causal structure of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 320-331.
    13. Gilles Zumbach & Paul Lynch, 2001. "Heterogeneous volatility cascade in financial markets," Papers cond-mat/0105162, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    2. Mehdi Tomas & Mathieu Rosenbaum, 2019. "From microscopic price dynamics to multidimensional rough volatility models," Papers 1910.13338, arXiv.org, revised Oct 2019.
    3. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    2. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    3. Gilles Zumbach, 2007. "Time reversal invariance in finance," Papers 0708.4022, arXiv.org.
    4. Rudy Morel & Gaspar Rochette & Roberto Leonarduzzi & Jean-Philippe Bouchaud & St'ephane Mallat, 2022. "Scale Dependencies and Self-Similar Models with Wavelet Scattering Spectra," Papers 2204.10177, arXiv.org, revised Jun 2023.
    5. Marcus Cordi & Damien Challet & Serge Kassibrakis, 2021. "The market nanostructure origin of asset price time reversal asymmetry," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 295-304, February.
    6. Marcus Cordi & Serge Kassibrakis & Damien Challet, 2018. "The market nanostructure origin of asset price time reversal asymmetry," Working Papers hal-01966419, HAL.
    7. Gilles Zumbach, 2009. "Volatility forecasts and the at-the-money implied volatility: a multi-components ARCH approach and its relation with market models," Papers 0901.2275, arXiv.org.
    8. Gilles Zumbach, 2011. "Characterizing heteroskedasticity," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1357-1369, October.
    9. L. Borland & J. -Ph. Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Papers physics/0507073, arXiv.org.
    10. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    11. David Mcmillan & Alan Speight, 2008. "Long-memory in high-frequency exchange rate volatility under temporal aggregation," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 251-261.
    12. Challet, Damien & Peirano, Pier Paolo, 2008. "The ups and downs of the renormalization group applied to financial time series," MPRA Paper 9770, University Library of Munich, Germany.
    13. Kevin Primicerio & Damien Challet, 2018. "Large large-trader activity weakens the long memory of limit order markets," Papers 1803.08390, arXiv.org.
    14. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    15. Jean-Philippe Bouchaud, 2021. "Radical Complexity," Papers 2103.09692, arXiv.org.
    16. Gilles Zumbach, 2010. "Volatility conditional on price trends," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 431-442.
    17. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Jan 2025.
    18. Alexandre Pannier & Antoine Jacquier, 2019. "On the uniqueness of solutions of stochastic Volterra equations," Papers 1912.05917, arXiv.org, revised Apr 2020.
    19. Léo Parent, 2022. "The EWMA Heston model," Post-Print hal-04431111, HAL.
    20. Zumbach, Gilles, 2012. "Option pricing and ARCH processes," Finance Research Letters, Elsevier, vol. 9(3), pages 144-156.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.02098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.