IDEAS home Printed from
   My bibliography  Save this article

Characterizing heteroskedasticity


  • Gilles Zumbach


Volatility clustering, or heteroskedasticity, is an important feature of all financial time series. In particular, the lagged correlation for the volatility is slowly decreasing with increasing lags. This paper characterizes its decay. First, Monte Carlo simulations are used to select the best volatility and correlation estimators for this task. Second, the empirical lagged correlations are studied over a set of 225 daily time series, and for the DJIA with a sample size of one century. The results strongly favor a log-decay shape, while an exponential and power law decay do not describe the data well. The implications for the description of financial time series by processes are important, as these findings exclude hyperbolic decay, but favor volatility cascade and multi-component ARCH processes. Third, the analysis of the decay coefficient shows that time series related to emerging countries have a shorter memory, in agreement with an analysis of the Hurst exponents published recently.

Suggested Citation

  • Gilles Zumbach, 2011. "Characterizing heteroskedasticity," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1357-1369, October.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:9:p:1357-1369
    DOI: 10.1080/14697688.2010.535555

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zumbach, Gilles, 2012. "Option pricing and ARCH processes," Finance Research Letters, Elsevier, vol. 9(3), pages 144-156.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:9:p:1357-1369. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.