IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00734355.html
   My bibliography  Save this paper

Baldovin-Stella stochastic volatility process and Wiener process mixtures

Author

Listed:
  • Pier Paolo Peirano

    (CFM - Capital Fund Management - Capital Fund Management)

  • Damien Challet

    (MAS - Mathématiques Appliquées aux Systèmes - EA 4037 - Ecole Centrale Paris)

Abstract

Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, we show that the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.

Suggested Citation

  • Pier Paolo Peirano & Damien Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," Post-Print hal-00734355, HAL.
  • Handle: RePEc:hal:journl:hal-00734355
    DOI: 10.1140/epjb/e2012-30134-y
    Note: View the original document on HAL open archive server: https://hal.science/hal-00734355
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00734355/document
    Download Restriction: no

    File URL: https://libkey.io/10.1140/epjb/e2012-30134-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    2. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu h., 2007. "Martingales, the efficient market hypothesis, and spurious stylized facts," MPRA Paper 5303, University Library of Munich, Germany.
    3. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    4. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
    5. Attilio L. Stella & Fulvio Baldovin, 2008. "Role of scaling in the statistical modeling of finance," Papers 0804.0331, arXiv.org.
    6. Drożdż, S. & Forczek, M. & Kwapień, J. & Oświe¸cimka, P. & Rak, R., 2007. "Stock market return distributions: From past to present," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 59-64.
    7. Bacry, Emmanuel & Kozhemyak, Alexey & Muzy, Jean-François, 2006. "Are asset return tail estimations related to volatility long-range correlations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 119-126.
    8. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    9. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2007. "Self‐Decomposability And Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 31-57, January.
    10. D. Sornette & Y. Malevergne & J. F. Muzy, 2002. "Volatility fingerprints of large shocks: Endogeneous versus exogeneous," Papers cond-mat/0204626, arXiv.org.
    11. S. Drozdz & M. Forczek & J. Kwapien & P. Oswiecimka & R. Rak, 2007. "Stock market return distributions: from past to present," Papers 0704.0664, arXiv.org.
    12. Paul Lynch & Gilles Zumbach, 2003. "Market heterogeneities and the causal structure of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 320-331.
    13. Fabrizio Lillo & Rosario N. Mantegna, 2001. "Power law relaxation in a complex system: Omori law after a financial market crash," Papers cond-mat/0111257, arXiv.org, revised Jun 2003.
    14. J.-P. Bouchaud & M. Potters & M. Meyer, 2000. "Apparent multifractality in financial time series," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 595-599, February.
    15. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    16. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    17. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    18. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    19. Michel Vellekoop & Hans Nieuwenhuis, 2007. "On option pricing models in the presence of heavy tails," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 563-573.
    20. Gilles Zumbach, 2004. "Volatility processes and volatility forecast with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 70-86.
    21. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    22. Dreier, I. & Kotz, S., 2002. "A note on the characteristic function of the t-distribution," Statistics & Probability Letters, Elsevier, vol. 57(3), pages 221-224, April.
    23. Helyette Geman & C. Peter M. Dilip Y. Marc, 2007. "Self decomposability and option pricing," Post-Print halshs-00144193, HAL.
    24. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.
    25. F. Lillo, 2007. "Limit order placement as an utility maximization problem and the origin of power law distribution of limit order prices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(4), pages 453-459, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    2. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    3. F. Baldovin & F. Camana & M. Caporin & M. Caraglio & A.L. Stella, 2015. "Ensemble properties of high-frequency data and intraday trading rules," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 231-245, February.
    4. Kaldasch, Joachim, 2014. "Evolutionary model of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 449-462.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Challet, Damien & Peirano, Pier Paolo, 2008. "The ups and downs of the renormalization group applied to financial time series," MPRA Paper 9770, University Library of Munich, Germany.
    2. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    3. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    5. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    6. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    7. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    8. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    9. D. Delpini & G. Bormetti, 2015. "Stochastic volatility with heterogeneous time scales," Quantitative Finance, Taylor & Francis Journals, vol. 15(10), pages 1597-1608, October.
    10. L. Borland & J. -Ph. Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Papers physics/0507073, arXiv.org.
    11. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    13. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    14. Oussama Tilfani & My Youssef El Boukfaoui, 2020. "Multifractal Analysis of African Stock Markets During the 2007–2008 US Crisis," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-31, January.
    15. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    16. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    17. Omar El Euch & Jim Gatheral & Radov{s} Radoiv{c}i'c & Mathieu Rosenbaum, 2018. "The Zumbach effect under rough Heston," Papers 1809.02098, arXiv.org.
    18. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    19. Michele Bianchi & Frank Fabozzi, 2015. "Investigating the Performance of Non-Gaussian Stochastic Intensity Models in the Calibration of Credit Default Swap Spreads," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 243-273, August.
    20. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.

    More about this item

    Keywords

    Stochastic volatility model; long memory; stylized fact; fat tails;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00734355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.