IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00734355.html
   My bibliography  Save this paper

Baldovin-Stella stochastic volatility process and Wiener process mixtures

Author

Listed:
  • Pier Paolo Peirano

    (CFM - Capital Fund Management - Capital Fund Management)

  • Damien Challet

    () (MAS - Mathématiques Appliquées aux Systèmes - EA 4037 - Ecole Centrale Paris)

Abstract

Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, we show that the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.

Suggested Citation

  • Pier Paolo Peirano & Damien Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," Post-Print hal-00734355, HAL.
  • Handle: RePEc:hal:journl:hal-00734355
    DOI: 10.1140/epjb/e2012-30134-y
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-00734355
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-00734355/document
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    2. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
    3. Drożdż, S. & Forczek, M. & Kwapień, J. & Oświe¸cimka, P. & Rak, R., 2007. "Stock market return distributions: From past to present," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 59-64.
    4. Bacry, Emmanuel & Kozhemyak, Alexey & Muzy, Jean-François, 2006. "Are asset return tail estimations related to volatility long-range correlations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 119-126.
    5. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    6. D. Sornette & Y. Malevergne & J. F. Muzy, 2002. "Volatility fingerprints of large shocks: Endogeneous versus exogeneous," Papers cond-mat/0204626, arXiv.org.
    7. S. Drozdz & M. Forczek & J. Kwapien & P. Oswiecimka & R. Rak, 2007. "Stock market return distributions: from past to present," Papers 0704.0664, arXiv.org.
    8. Paul Lynch & Gilles Zumbach, 2003. "Market heterogeneities and the causal structure of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 320-331.
    9. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    10. J.-P. Bouchaud & M. Potters & M. Meyer, 2000. "Apparent multifractality in financial time series," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 595-599, February.
    11. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    12. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    13. Michel Vellekoop & Hans Nieuwenhuis, 2007. "On option pricing models in the presence of heavy tails," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 563-573.
    14. Gilles Zumbach, 2004. "Volatility processes and volatility forecast with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 70-86.
    15. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    16. Dreier, I. & Kotz, S., 2002. "A note on the characteristic function of the t-distribution," Statistics & Probability Letters, Elsevier, vol. 57(3), pages 221-224, April.
    17. Helyette Geman & C. Peter M. Dilip Y. Marc, 2007. "Self decomposability and option pricing," Post-Print halshs-00144193, HAL.
    18. F. Lillo, 2007. "Limit order placement as an utility maximization problem and the origin of power law distribution of limit order prices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(4), pages 453-459, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    2. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    3. Kaldasch, Joachim, 2014. "Evolutionary model of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 449-462.

    More about this item

    Keywords

    Stochastic volatility model; long memory; stylized fact; fat tails;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00734355. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.