IDEAS home Printed from
   My bibliography  Save this paper

Multiplicative noise, fast convolution, and pricing


  • Giacomo Bormetti
  • Sofia Cazzaniga


In this work we detail the application of a fast convolution algorithm computing high dimensional integrals to the context of multiplicative noise stochastic processes. The algorithm provides a numerical solution to the problem of characterizing conditional probability density functions at arbitrary time, and we applied it successfully to quadratic and piecewise linear diffusion processes. The ability in reproducing statistical features of financial return time series, such as thickness of the tails and scaling properties, makes this processes appealing for option pricing. Since exact analytical results are missing, we exploit the fast convolution as a numerical method alternative to the Monte Carlo simulation both in objective and risk neutral settings. In numerical sections we document how fast convolution outperforms Monte Carlo both in velocity and efficiency terms.

Suggested Citation

  • Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451,
  • Handle: RePEc:arx:papers:1107.1451

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. McCauley, Joseph L. & Gunaratne, Gemunu H. & Bassler, Kevin E., 2007. "Hurst exponents, Markov processes, and fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 1-9.
    2. J.L. McCauley & G.h. Gunaratne, 2002. "An empirical model of volatility of returns and option pricing," Computing in Economics and Finance 2002 186, Society for Computational Economics.
    3. McCauley, Joseph L. & Gunaratne, Gemunu H., 2003. "An empirical model of volatility of returns and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 178-198.
    4. Montagna, Guido & Nicrosini, Oreste & Moreni, Nicola, 2002. "A path integral way to option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 450-466.
    5. Danilo Delpini & Giacomo Bormetti, 2010. "Minimal model of financial stylized facts," Papers 1011.5983,, revised Mar 2011.
    6. Bormetti, Giacomo & Cisana, Enrica & Montagna, Guido & Nicrosini, Oreste, 2007. "A non-Gaussian approach to risk measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 532-542.
    7. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2006. "Pricing exotic options in a path integral approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 55-66.
    8. Alejandro-Quiñones, Ángel L. & Bassler, Kevin E. & Field, Michael & McCauley, Joseph L. & Nicol, Matthew & Timofeyev, Ilya & Török, Andrew & Gunaratne, Gemunu H., 2006. "A theory of fluctuations in stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 383-392.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    10. Eydeland, A, 1994. "A Fast Algorithm for Computing Integrals in Function Spaces: Financial Applications," Computational Economics, Springer;Society for Computational Economics, vol. 7(4), pages 277-285.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    13. Evert Wipplinger, 2007. "Philippe Jorion: Value at Risk – The New Benchmark for Managing Financial Risk," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 21(3), pages 397-398, September.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Carl Chiarella & Nadima El-Hassan, 1997. "Evaluation of Derivative Security Prices in the Heath-Jarrow-Morton Framework as Path Integrals Using Fast Fourier Transform Techniques," Working Paper Series 72, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    16. G. Bormetti & V. Cazzola & G. Livan & G. Montagna & O. Nicrosini, 2009. "A Generalized Fourier Transform Approach to Risk Measures," Papers 0909.3978,, revised May 2012.
    17. McMillen, Tyler, 2008. "Simulation and Inference for Stochastic Differential Equations: With R Examples," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 26(b02).
    18. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2004. "Pricing Exotic Options in a Path Integral Approach," Papers cond-mat/0407321,, revised May 2006.
    19. Michel Vellekoop & Hans Nieuwenhuis, 2007. "On option pricing models in the presence of heavy tails," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 563-573.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1107.1451. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.