IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A unified model for price return distributions used in econophysics

  • Bucsa, G.
  • Jovanovic, F.
  • Schinckus, C.
Registered author(s):

    For a decade, a new theoretical movement called “econophysics” has been initiated by some physicists who began to publish articles devoted to the study of economic and financial phenomena. Since then, econophysicists have written a very prolific literature about the way of characterizing the evolution of financial prices. Today, there is an “extreme diversity” of models recently developed by econophysicists whose research is sometimes presented as an ill-defined field. The objective of this paper is precisely to provide a unified framework in order to contribute to unify econophysics and to base this new field on shared scientific standards.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711100286X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 390 (2011)
    Issue (Month): 20 ()
    Pages: 3435-3443

    as
    in new window

    Handle: RePEc:eee:phsmap:v:390:y:2011:i:20:p:3435-3443
    Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Michael, Fredrick & Johnson, M.D., 2003. "Financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 525-534.
    2. McCauley, Joseph L. & Gunaratne, Gemunu H., 2003. "An empirical model of volatility of returns and option pricing," MPRA Paper 2161, University Library of Munich, Germany.
    3. McCauley, Joseph L., 2003. "Thermodynamic analogies in economics and finance: instability of markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 199-212.
    4. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    5. McCauley, Joseph L. & Gunaratne, Gemunu H., 2003. "An empirical model of volatility of returns and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 178-198.
    6. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
    8. Schaden, Martin, 2002. "Quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 511-538.
    9. Louzoun, Yoram & Solomon, Sorin, 2001. "Volatility driven market in a generalized Lotka–Voltera formalism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 302(1), pages 220-233.
    10. McCauley, Joseph l., 2004. "Thermodynamic analogies in economics and finance: instability of markets," MPRA Paper 2159, University Library of Munich, Germany.
    11. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(02), pages 170-196, June.
    12. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-80, April.
    13. Alejandro-Quiñones, Ángel L. & Bassler, Kevin E. & Field, Michael & McCauley, Joseph L. & Nicol, Matthew & Timofeyev, Ilya & Török, Andrew & Gunaratne, Gemunu H., 2006. "A theory of fluctuations in stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 383-392.
    14. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Stanley, Eugene, 2007. "A unified econophysics explanation for the power-law exponents of stock market activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 81-88.
    15. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
    16. Gallegati, Mauro & Keen, Steve & Lux, Thomas & Ormerod, Paul, 2006. "Worrying trends in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 1-6.
    17. Galam, Serge, 2004. "Sociophysics: a personal testimony," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 49-55.
    18. Bouchaud, Jean-Philippe, 2002. "An introduction to statistical finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(1), pages 238-251.
    19. Skjeltorp, Johannes A, 2000. "Scaling in the Norwegian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 486-528.
    20. Martin Schaden, 2002. "Quantum Finance," Papers physics/0203006, arXiv.org, revised Aug 2002.
    21. Gupta, Hari M. & Campanha, José R., 1999. "The gradually truncated Lévy flight for systems with power-law distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(1), pages 231-239.
    22. Gupta, Hari M. & Campanha, José R., 2002. "Tsallis statistics and gradually truncated Lévy flight—distribution of an economical index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 381-387.
    23. Aleksander Weron & Szymon Mercik & Rafal Weron, 1998. "Origins of the scaling behaviour in the dynamics of financial data," HSC Research Reports HSC/98/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    24. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
    25. Blank, Aharon & Solomon, Sorin, 2000. "Power laws in cities population, financial markets and internet sites (scaling in systems with a variable number of components)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 279-288.
    26. Mariani, M.C. & Liu, Y., 2007. "Normalized truncated Levy walks applied to the study of financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 590-598.
    27. Stanley, H.E. & Afanasyev, V. & Amaral, L.A.N. & Buldyrev, S.V. & Goldberger, A.L. & Havlin, S. & Leschhorn, H. & Maass, P. & Mantegna, R.N. & Peng, C.-K. & Prince, P.A. & Salinger, M.A. & Stanley, M., 1996. "Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 224(1), pages 302-321.
    28. Jean-Philippe Bouchaud, 2002. "An introduction to statistical finance," Science & Finance (CFM) working paper archive 313238, Science & Finance, Capital Fund Management.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:20:p:3435-3443. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.