IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

An empirical model of volatility of returns and option pricing

  • J.L. McCauley
  • G.h. Gunaratne

This paper reports several entirely new results on financial market dynamics and option pricing We observe that empirical distributions of returns are much better approximated by an exponential distribution than by a Gaussian. This exponential distribution of asset prices can be used to develop a new pricing model for options (in closed algebraic form) that is shown to provide valuations that agree very well with those used by traders. We show how the Fokker-Planck formulation of fluctuations can be used with a local volatility (diffusion coeffficient) to generate an exponential distribution for asset returns, and also how fat tails for extreme returns are generated dynamically by a simple generalization of our new volatility model. Nonuniqueness in deducing dynamics from empirical data is discussed and is shown to have no practical effect over time scales much less than one hundred years. We derive an option pricing pde and explain why it‘s superfluous, because all information required to price options in agreement with the delta-hedge is already included in the Green function of the Fokker-Planck equation for a special choice of parameters. Finally, we also show how to calculate put and call prices for a stretched exponential returns density.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2002 with number 186.

as
in new window

Length:
Date of creation: 01 Jul 2002
Date of revision:
Handle: RePEc:sce:scecf2:186
Contact details of provider: Web page: http://www.cepremap.cnrs.fr/sce2002.html/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gemunu H. Gunaratne & Joseph L. McCauley, 2002. "A theory for Fluctuations in Stock Prices and Valuation of their Options," Papers cond-mat/0209475, arXiv.org.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:scecf2:186. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.