IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this book or follow this series

A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions

Jump-Diffusion processes capture the standardized empirical statistical features of interest rate dynamis, thus providing an improved setting to overcome some of the mispricing of derivative securities that arises with the extensively develped pure diffusion models. A combination of jump-diffusion models with state dependent volatility specifications generates a class of models that accommodates the empirical statistical evidence of jump components and the more general and realistic setting of stochastic volatiliy. For modelling the term structure of interest rates, the Heath, Jarrow and Morton (1992) (hereafter HJM) framework constitutes the most general and adaptable platform for the study of interest rate dynamics that accommodates, by construction, consistency with the currently observed yield curve within an arbitrage free environment. The HJM model requires two main inputs, the market information of the initial forward curve and the specification of the forward rate volatility. This second requirement of the volaility specification enables the model builder to generate a wide class of models and in particular to derive within HJM framework a number of the popular interest rate models. However, the general HJM model is Markovian only in the entire yield curve, thus requiring an infinite number of state variables to determine the future evolution of the yield curve. By imposing appropriate conditions on the forward rate volatility, the HJM model can admit finite dimensional Markovian structures, where the generality of the HJM models coexists with the computational tractability of Markovian structures. The main contributions of this thesis include: - Markovianisation of jump-diffusion versions of the HJM model - Chapters 2 and 3. Under a specific formulation of state and time dependent forward rate volatility specifications, Markovian representations of a generalised Shirakawa (1991) model are developed. Further, finite dimensional affine realisations of the term structure in terms of forward rates are obtained. Within this framework, some specific classes of jump-diffusion term structure models are examined such as extensions of the Hull and White (1990), (194) class of models and the Ritchken and Sankarasubramanian (1995) class of models to the jump-diffusion case. - Markovianisation of defaultable HJM models - Chapters 4. Suitable state dependent volatility specifications, under deterministic default intensity, lead to Markovian defaultable term structures under the Schonbucher (2000), (2003) general HJM framework. The state variables of this model can be expressed in terms of a finite number of benchmark defaultable forward rates. Moving to the more general setting of stochastic intensity of defaultable term structures, we discuss model limitations and an approximate Markovianisation of the system is proposed. - Bond option pricing under jump-diffusions - Chapter 5. Within the jump-diffusion framework, the pricing of interest rate derivative securities is discussed. A tractable Black-Scholes type pricing formula is derived under the assumption of constant jump volatility specifications and a viable control variate method is propsed for pricing by Monte Carlo simulation under more general volatity specifications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.business.uts.edu.au/finance/research/phd_thesis/christina_nikitopoulos_sklibosios.pdf
Download Restriction: no

as
in new window

This book is provided by Finance Discipline Group, UTS Business School, University of Technology, Sydney in its series PhD Thesis with number 6 and published in 2005.
Handle: RePEc:uts:finphd:6
Contact details of provider: Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.uts.edu.au/about/uts-business-school/finance

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sarig, Oded & Warga, Arthur, 1989. " Some Empirical Estimates of the Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 44(5), pages 1351-60, December.
  2. Jarrow, Robert A & Turnbull, Stuart M, 1995. " Pricing Derivatives on Financial Securities Subject to Credit Risk," Journal of Finance, American Finance Association, vol. 50(1), pages 53-85, March.
  3. Jamshidian, Farshid, 1989. " An Exact Bond Option Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 205-09, March.
  4. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410.
  5. Jean -Luc Prigent & Olivier Renault & Olivier Scaillet, 2000. "An Empirical Investigation in Credit Spread Indices," Working Papers 2000-59, Centre de Recherche en Economie et Statistique.
  6. Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
  7. Flesaker, Bjorn, 1993. "Testing the Heath-Jarrow-Morton/Ho-Lee Model of Interest Rate Contingent Claims Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(04), pages 483-495, December.
  8. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-30, March.
  9. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
  10. Jarrow, Robert A & Lando, David & Turnbull, Stuart M, 1997. "A Markov Model for the Term Structure of Credit Risk Spreads," Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 481-523.
  11. Duffie, Darrell & Singleton, Kenneth J, 1997. " An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
  12. Li, Anlong & Ritchken, Peter & Sankarasubramanian, L, 1995. " Lattice Models for Pricing American Interest Rate Claims," Journal of Finance, American Finance Association, vol. 50(2), pages 719-37, June.
  13. Björk, Tomas & Landen, Camilla, 2000. "On the construction of finite dimensional realizations for nonlinear forward rate models," SSE/EFI Working Paper Series in Economics and Finance 420, Stockholm School of Economics.
  14. Chapman, David A & Long, John B, Jr & Pearson, Neil D, 1999. "Using Proxies for the Short Rate: When Are Three Months Like an Instant?," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 763-806.
  15. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
  16. Björk, Tomas & Gombani, Andrea, 1997. "Minimal Realizations of Forward Rates," SSE/EFI Working Paper Series in Economics and Finance 182, Stockholm School of Economics.
  17. Prigent, J.-L. & Renault, O. & Scaillet, O., 2000. "An Empirical Investigation in Credit Spread Indices," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2000028, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  18. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
  19. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-27, July.
  20. Ball, Clifford A & Torous, Walter N, 1985. " On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-73, March.
  21. Hiroshi Shirakawa, 1991. "Interest Rate Option Pricing With Poisson-Gaussian Forward Rate Curve Processes," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 77-94.
  22. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  23. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
  24. Hans Byström & Oh-Kang Kwon, 2003. "A Simple Continuous Measure of Credit Risk," Research Paper Series 111, Quantitative Finance Research Centre, University of Technology, Sydney.
  25. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  26. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
  27. Inui, Koji & Kijima, Masaaki, 1998. "A Markovian Framework in Multi-Factor Heath-Jarrow-Morton Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(03), pages 423-440, September.
  28. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  29. de Jong, Frank & Santa-Clara, Pedro, 1999. "The Dynamics of the Forward Interest Rate Curve: A Formulation with State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 131-157, March.
  30. George Chacko, 2002. "Pricing Interest Rate Derivatives: A General Approach," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 195-241, March.
  31. Ram Bhar & Carl Chiarella, 1995. "Transformation of Heath-Jarrow-Morton Models to Markovian Systems," Working Paper Series 53, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  32. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-92.
  33. Andrew Mark Jeffrey, 1995. "Single Factor Heath-Jarrow-Morton Term Structure Models Based on Markov Spot Interest Rate Dynamics," Yale School of Management Working Papers ysm46, Yale School of Management.
  34. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  35. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
  36. Andrew Carverhill, 1994. "When Is The Short Rate Markovian?," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 305-312.
  37. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239.
  38. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  39. Hardouvelis, Gikas A., 1988. "Economic news, exchange rates and interest rates," Journal of International Money and Finance, Elsevier, vol. 7(1), pages 23-35, March.
  40. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
  41. To, Thuy Duong & Carl Chiarella, 2003. "The Jump Component of the Volatility Structure of Interest Rate Futures Markets: An International Comparison," Royal Economic Society Annual Conference 2003 205, Royal Economic Society.
  42. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-64, May.
  43. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
  44. Philipp J. Schonbucher, 1997. "Team Structure Modelling of Defaultable Bonds," FMG Discussion Papers dp272, Financial Markets Group.
  45. Fabio Mercurio & Wolfgang J. Runggaldier, 1993. "Option Pricing For Jump Diffusions: Approximations and Their Interpretation," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 191-200.
  46. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  47. Björk, Tomas & Svensson, Lars, 1999. "On the Existence of Finite Dimensional Realizations for Nonlinear Forward Rate Models," SSE/EFI Working Paper Series in Economics and Finance 338, Stockholm School of Economics.
  48. Carl Chiarella & Nadima El-Hassan, 1996. "A Preference Free Partial Differential Equation for the Term Structure of Interest Rates," Working Paper Series 63, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  49. Duffie, Darrell & Huang, Ming, 1996. " Swap Rates and Credit Quality," Journal of Finance, American Finance Association, vol. 51(3), pages 921-49, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uts:finphd:6. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.