IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v320y2003icp525-534.html
   My bibliography  Save this article

Financial market dynamics

Author

Listed:
  • Michael, Fredrick
  • Johnson, M.D.

Abstract

A necessary precondition for modeling financial markets is a complete understanding of their statistics, including dynamics. Distributions derived from nonextensive Tsallis statistics are closely connected with dynamics described by a nonlinear Fokker–Planck equation. The combination shows promise in describing stochastic processes with power-law distributions and superdiffusive dynamics. We investigate intra-day price changes in the S&P500 stock index within this framework. We find that the power-law tails of the distributions, and the index's anomalously diffusing dynamics, are very accurately described by this approach. Our results show good agreement between market data and Fokker–Planck dynamics. This approach may be applicable in any anomalously diffusing system in which the correlations in time can be accounted for by an Ito–Langevin process with a simple time-dependent diffusion coefficient.

Suggested Citation

  • Michael, Fredrick & Johnson, M.D., 2003. "Financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 525-534.
  • Handle: RePEc:eee:phsmap:v:320:y:2003:i:c:p:525-534
    DOI: 10.1016/S0378-4371(02)01558-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102015583
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01558-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takahashi, Taiki & Hadzibeganovic, Tarik & Cannas, Sergio & Makino, Takaki & Fukui, Hiroki & Kitayama, Shinobu, 2009. "Cultural neuroeconomics of intertemporal choice," MPRA Paper 16814, University Library of Munich, Germany.
    2. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    3. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    4. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    5. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    6. Bucsa, G. & Jovanovic, F. & Schinckus, C., 2011. "A unified model for price return distributions used in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3435-3443.
    7. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    9. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    10. dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
    11. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:320:y:2003:i:c:p:525-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.