IDEAS home Printed from https://ideas.repec.org/p/uts/wpaper/72.html
   My bibliography  Save this paper

Evaluation of Derivative Security Prices in the Heath-Jarrow-Morton Framework as Path Integrals Using Fast Fourier Transform Techniques

Author

Abstract

This paper considers the evaluation of derivative security prices within the Heath-Jarrow-Morton framework of stochastic interest rates, such as bond options. Within this framework, the stochastic dynamics driving prices are in general non-Markovian. Hence, in principle the partial differential equations governing prices require an infinite dimensinal state space. We discuss a class of forward rate volatility functions which allow the stochastic dynamics to be expressed in Markovian form and hence obtain a finite dimensional state space for the partial differential equations governing prices. By applying to the Markovian form, the transformed suggested by Eydeland (1994), the pricing problem can be set up as a path integral in function space. These integrals are evaluated using fast fourier transform techniques. We apply the technique to the pricing of American bond options and compare the computational time with other methods currently employed such as the method of lines and more traditional partial differential equation solution techniques.

Suggested Citation

  • Carl Chiarella & Nadima El-Hassan, 1997. "Evaluation of Derivative Security Prices in the Heath-Jarrow-Morton Framework as Path Integrals Using Fast Fourier Transform Techniques," Working Paper Series 72, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:wpaper:72
    as

    Download full text from publisher

    File URL: http://www.finance.uts.edu.au/research/wpapers/wp72.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Li, Anlong & Ritchken, Peter & Sankarasubramanian, L, 1995. " Lattice Models for Pricing American Interest Rate Claims," Journal of Finance, American Finance Association, vol. 50(2), pages 719-737, June.
    2. Bhar, R. & Hunt, D.F., 1993. "Predicting the Short Term Forward Interest Rate Structure Using a Parsimonious Model," Papers e9307, Western Sydney - School of Business And Technology.
    3. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26.
    4. Carl Chiarella & Nadima El-Hassan, 1996. "A Preference Free Partial Differential Equation for the Term Structure of Interest Rates," Working Paper Series 63, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    5. Andrew Carverhill, 1994. "When Is The Short Rate Markovian?," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 305-312.
    6. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    7. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    8. Jeffrey, Andrew, 1995. "Single Factor Heath-Jarrow-Morton Term Structure Models Based on Markov Spot Interest Rate Dynamics," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(04), pages 619-642, December.
    9. Eydeland, A, 1994. "A Fast Algorithm for Computing Integrals in Function Spaces: Financial Applications," Computational Economics, Springer;Society for Computational Economics, vol. 7(4), pages 277-285.
    10. Andrew Mark Jeffrey, 1995. "Single Factor Heath-Jarrow-Morton Term Structure Models Based on Markov Spot Interest Rate Dynamics," Yale School of Management Working Papers ysm46, Yale School of Management.
    11. Brennan, Michael J. & Schwartz, Eduardo S., 1978. "Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(03), pages 461-474, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belal E. Baaquie, 1998. "Quantum Field Theory of Treasury Bonds," Papers cond-mat/9809199, arXiv.org.
    2. Slanina, Frantisek, 2013. "Essentials of Econophysics Modelling," OUP Catalogue, Oxford University Press, number 9780199299683.
    3. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    4. Andrew Matacz, 2000. "Path dependent option pricing: the path integral partial averaging method," Science & Finance (CFM) working paper archive 500034, Science & Finance, Capital Fund Management.
    5. Andrew Matacz, 2000. "Path Dependent Option Pricing: the path integral partial averaging method," Papers cond-mat/0005319, arXiv.org.
    6. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
    7. Ramaprasad Bhar & Carl Chiarella, 1997. "Interest rate futures: estimation of volatility parameters in an arbitrage-free framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(4), pages 181-199.
    8. Belal E. Baaquie & Marakani Srikant & Mitch Warachka, 2002. "A Quantum Field Theory Term Structure Model Applied to Hedging," Papers cond-mat/0206457, arXiv.org.
    9. Carl Chiarella & Nadima El-Hassan & Adam Kucera, 2004. "Evaluation of Point Barrier Options in a Path Integral Framework Using Fourier-Hermite Expansions," Research Paper Series 126, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    11. Carl Chiarella & Nadima El-Hassan, 1999. "Pricing American Interest Rate Options in a Heath-Jarrow-Morton Framework Using Method of Lines," Research Paper Series 12, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Sella Lisa, 2008. "Old and New Spectral Techniques for Economic Time Series," Department of Economics and Statistics Cognetti de Martiis. Working Papers 200809, University of Turin.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:wpaper:72. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford) or (Marina Grazioli). General contact details of provider: http://edirc.repec.org/data/sfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.