IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On the Existence of Finite Dimensional Realizations for Nonlinear Forward Rate Models

  • Björk, Tomas

    ()

    (Dept. of Finance, Stockholm School of Economics)

  • Svensson, Lars

    ()

    (Department of Mathematics)

We consider interest rate models of Heath-Jarrow-Morton type, where the forward rates are driven by a multidimensional Wiener process, and where the volatility is allowed to be an arbitrary smooth functional of the present forward rate curve. Using ideas from differential geometry as well as from systems and control theory, we investigate when the forward rate process can be realized by a finite dimensional Markovian state space model, and we give general necessary and sufficient conditions, in terms of the volatility structure, for the existence of a finite dimensional realization. A number of concrete applications are given, and most previously known realization results for time homogenous Wiener driven models are included and extended. As a special case we give a general and easily applicable necessary and sufficient condition for when the induced short rate is a Markov porcess. In particular we show that the only forward rate models, with short rate dependent volatility structures, which generically give rise to a Markovian short rate are the affine ones. These models are thus the only generic short rate models from a forward rate point of view.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://swopec.hhs.se/hastef/papers/hastef0338.pdf.zip
Download Restriction: no

File URL: http://swopec.hhs.se/hastef/papers/hastef0338.pdf
Download Restriction: no

File URL: http://swopec.hhs.se/hastef/papers/hastef0338.ps.zip
Download Restriction: no

File URL: http://swopec.hhs.se/hastef/papers/hastef0338.ps
Download Restriction: no

Paper provided by Stockholm School of Economics in its series SSE/EFI Working Paper Series in Economics and Finance with number 338.

as
in new window

Length: 46 pages
Date of creation: 22 Oct 1999
Date of revision:
Publication status: Published in Mathematical Finance, 2001, pages 205-243.
Handle: RePEc:hhs:hastef:0338
Contact details of provider: Postal: The Economic Research Institute, Stockholm School of Economics, P.O. Box 6501, 113 83 Stockholm, Sweden
Phone: +46-(0)8-736 90 00
Fax: +46-(0)8-31 01 57
Web page: http://www.hhs.se/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-92.
  2. Björk, Tomas & Gombani, Andrea, 1997. "Minimal Realizations of Forward Rates," SSE/EFI Working Paper Series in Economics and Finance 182, Stockholm School of Economics.
  3. Inui, Koji & Kijima, Masaaki, 1998. "A Markovian Framework in Multi-Factor Heath-Jarrow-Morton Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(03), pages 423-440, September.
  4. Carl Chiarella & Oh Kang Kwon, 2001. "Forward rate dependent Markovian transformations of the Heath-Jarrow-Morton term structure model," Finance and Stochastics, Springer, vol. 5(2), pages 237-257.
  5. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  6. Björk, Tomas & Landen, Camilla, 2000. "On the construction of finite dimensional realizations for nonlinear forward rate models," SSE/EFI Working Paper Series in Economics and Finance 420, Stockholm School of Economics.
  7. Ram Bhar & Carl Chiarella, 1995. "Transformation of Heath-Jarrow-Morton Models to Markovian Systems," Working Paper Series 53, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  8. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
  9. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
  10. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-89, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0338. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Lundin)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.