IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v9y1999i4p323-348.html
   My bibliography  Save this article

Interest Rate Dynamics and Consistent Forward Rate Curves

Author

Listed:
  • Tomas Björk
  • Bent Jesper Christensen

Abstract

We consider as given an arbitrage‐free interest rate model M, and a parametrized family of forward rate curves G. We study the question as to when the given family G is consistent with the dynamics of the interest rate model M, in the sense that M actually will produce forward rate curves belonging to G. We allow the interest rate model to be driven by a multidimensional Wiener process, as well as by a marked point process, and we give necessary and sufficient conditions for consistency. As test cases, we study some popular models, obtaining both positive and negative results about consistency. We also introduce a natural exponential‐polynomial family of forward rate curves, and for this family we give necessary and sufficient conditions for the existence of consistent interest rate models with deterministic volatility functions.

Suggested Citation

  • Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
  • Handle: RePEc:bla:mathfi:v:9:y:1999:i:4:p:323-348
    DOI: 10.1111/1467-9965.00072
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.00072
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.00072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    2. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    3. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    6. Hiroshi Shirakawa, 1991. "Interest Rate Option Pricing With Poisson‐Gaussian Forward Rate Curve Processes," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 77-94, October.
    7. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    8. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    9. Alan Brace & Marek Musiela, 1994. "A Multifactor Gauss Markov Implementation Of Heath, Jarrow, And Morton," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 259-283, July.
    10. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Björk, Tomas & Gombani, Andrea, 1997. "Minimal Realizations of Forward Rates," SSE/EFI Working Paper Series in Economics and Finance 182, Stockholm School of Economics.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Björk, Tomas, 2000. "A Geometric View of Interest Rate Theory," SSE/EFI Working Paper Series in Economics and Finance 419, Stockholm School of Economics, revised 21 Dec 2000.
    4. Björk, T. & Kabanov, Y. & Runggaldier, W., 1995. "Bond markets where prices are driven by a general marked point process," SSE/EFI Working Paper Series in Economics and Finance 88, Stockholm School of Economics.
    5. Bjork, Tomas & Christensen, Bent Jesper & Gombani, Andrea, 1998. "Some system theoretic aspects of interest rate theory," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 17-23, May.
    6. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    7. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    8. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    11. Souta Nakatani & Kiyohiko G. Nishimura & Taiga Saito & Akihiko Takahashi, 2020. "Interest Rate Model with Investor Attitude and Text Mining (Published in IEEE Access)," CARF F-Series CARF-F-479, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    12. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    13. Lin, Shih-Kuei & Wang, Shin-Yun & Chen, Carl R. & Xu, Lian-Wen, 2017. "Pricing Range Accrual Interest Rate Swap employing LIBOR market models with jump risks," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 359-373.
    14. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    15. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    16. Yu, Wei-Choun & Zivot, Eric, 2011. "Forecasting the term structures of Treasury and corporate yields using dynamic Nelson-Siegel models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 579-591.
    17. repec:dau:papers:123456789/5374 is not listed on IDEAS
    18. Molenaars, Tomas K. & Reinerink, Nick H. & Hemminga, Marcus A., 2013. "Forecasting the yield curve - Forecast performance of the dynamic Nelson-Siegel model from 1971 to 2008," MPRA Paper 61862, University Library of Munich, Germany.
    19. Jin-Chuan Duan & Kris Jacobs, 2001. "Short and Long Memory in Equilibrium Interest Rate Dynamics," CIRANO Working Papers 2001s-22, CIRANO.
    20. Ubukata, M. & Fukushige, M., 2009. "Estimation and inference in the yield curve model with an instantaneous error term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2938-2946.
    21. Alfaro, Rodrigo & Becerra, Juan Sebastian & Sagner, Andres, 2010. "Estimación de la estructura de tasas utilizando el modelo Dinámico Nelson Siegel: resultados para Chile y EEUU [The Dynamic Nelson-Siegel model: empirical results for Chile and US]," MPRA Paper 25912, University Library of Munich, Germany, revised 23 Jun 2010.

    More about this item

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:9:y:1999:i:4:p:323-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.