IDEAS home Printed from https://ideas.repec.org/p/ajf/louvlr/2021024.html

Affine term structure models: a time-change approach with perfect fit to market curves

Author

Listed:
  • Mbaye, Cheikh

    (Université catholique de Louvain, LIDAM/CORE, Belgium)

  • Vrins, Frédéric

    (Université catholique de Louvain, LIDAM/CORE, Belgium)

Abstract

We address the so-called calibration problem which consists of fitting in a tractable way a given model to a specified term structure like, e.g., yield, prepayment or default probability curves. Time-homogeneous jump-diffusions like Vasicek or Cox-Ingersoll-Ross (possibly coupled with compound Poisson jumps, JCIR, a.k.a. SRJD), are tractable processes but have limited flexibility; they fail to replicate actual market curves. The deterministic shift extension of the latter, Hull-White or JCIR++ (a.k.a. SSRJD) is a simple but yet efficient solution that is widely used by both academics and practitioners. However, the shift approach may not be appropriate when positivity is required, a common constraint when dealing with credit spreads or default intensities. In this paper, we tackle this problem by adopting a time change approach, leading to the TC-JCIR model. On the top of providing an elegant solution to the calibration problem under positivity constraint, our model features additional interesting properties in terms of variance. It is compared to the shift extension on various credit risk applications such as credit default swap, credit default swaption and credit valuation adjustment under wrong-way risk. The TC-JCIR model is able to generate much larger implied volatilities and covariance effects than JCIR++ under positivity constraint, and therefore offers an appealing alternative to the shift extension in such cases.

Suggested Citation

  • Mbaye, Cheikh & Vrins, Frédéric, 2021. "Affine term structure models: a time-change approach with perfect fit to market curves," LIDAM Reprints LFIN 2021024, Université catholique de Louvain, Louvain Finance (LFIN).
  • Handle: RePEc:ajf:louvlr:2021024
    Note: In: Mathematical Finance, 2022, vol. 32(2), p. 678-724
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Cheikh Mbaye & Fr'ed'eric Vrins, 2019. "An arbitrage-free conic martingale model with application to credit risk," Papers 1909.02474, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajf:louvlr:2021024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Séverine De Visscher (email available below). General contact details of provider: https://edirc.repec.org/data/lfuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.