IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Finite-dimensional Realizations of Regime-switching HJM Models

  • Mikael Elhouar

This paper studies Heath-Jarrow-Morton-type models with regime-switching stochastic volatility. In this setting the forward rate volatility is allowed to depend on the current forward rate curve as well as on a continuous time Markov chain y with finitely many states. Employing the framework developed by Bjork and Svensson we find necessary and sufficient conditions on the volatility guaranteeing the representation of the forward rate process by a finite-dimensional Markovian state space model. These conditions allow us to investigate regime-switching generalizations of some well-known models such as those by Ho-Lee, Hull-White, and Cox-Ingersoll-Ross.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860801987133
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

Volume (Year): 15 (2008)
Issue (Month): 4 ()
Pages: 331-354

as
in new window

Handle: RePEc:taf:apmtfi:v:15:y:2008:i:4:p:331-354
Contact details of provider: Web page: http://www.tandfonline.com/RAMF20

Order Information: Web: http://www.tandfonline.com/pricing/journal/RAMF20

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Carl Chiarella & Oh-Kang Kwon, 1999. "Forward Rate Dependent Markovian Transformations of the Heath-Jarrow-Morton Term Structure Model," Research Paper Series 5, Quantitative Finance Research Centre, University of Technology, Sydney.
  2. Garcia, R. & Perron, P., 1994. "An Analysis of the Real Interest rate Under Regime Shifts," Cahiers de recherche 9428, Universite de Montreal, Departement de sciences economiques.
  3. Inui, Koji & Kijima, Masaaki, 1998. "A Markovian Framework in Multi-Factor Heath-Jarrow-Morton Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(03), pages 423-440, September.
  4. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
  5. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26.
  6. Björk, Tomas & Christensen, Bent Jesper, 1997. "Interest Rate Dynamics and Consistent Forward Rate Curves," SSE/EFI Working Paper Series in Economics and Finance 209, Stockholm School of Economics.
  7. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-92.
  8. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
  9. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
  10. Björk, Tomas & Landen, Camilla, 2000. "On the construction of finite dimensional realizations for nonlinear forward rate models," SSE/EFI Working Paper Series in Economics and Finance 420, Stockholm School of Economics.
  11. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
  12. Stoyan Valchev, 2004. "Stochastic volatility Gaussian Heath-Jarrow-Morton models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 347-368.
  13. Björk, Tomas & Svensson, Lars, 1999. "On the Existence of Finite Dimensional Realizations for Nonlinear Forward Rate Models," SSE/EFI Working Paper Series in Economics and Finance 338, Stockholm School of Economics.
  14. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-29, December.
  15. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  16. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  17. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
  18. Asbjørn T. Hansen & Rolf Poulsen, 2000. "A simple regime switching term structure model," Finance and Stochastics, Springer, vol. 4(4), pages 409-429.
  19. Qiang Dai & Kenneth J. Singleton & Wei Yang, 2007. "Regime Shifts in a Dynamic Term Structure Model of U.S. Treasury Bond Yields," Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1669-1706, 2007 12.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:15:y:2008:i:4:p:331-354. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.