IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Transformation of Heath-Jarrow-Morton Models to Markovian Systems

A class of volatility functions for the forward rate process is considered, which allows the bond price dynamics in the Heath-Jarrow-Morton (HJM) framework to be reduced to a finite dimensional Markovian system. The use of this Markovian system in estimation of parameters of the volatility function via use of the Kalman filter is discussed. Further, the Markovian system allows the link to be drawn between the HJM and the Vasicek/Cox-Ingersoll-Ross (CIR) frameworks for modelling the term structure of interest rates.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.finance.uts.edu.au/research/wpapers/wp53.pdf
Download Restriction: no

Paper provided by Finance Discipline Group, UTS Business School, University of Technology, Sydney in its series Working Paper Series with number 53.

as
in new window

Length: 31 pages
Date of creation: 01 Dec 1995
Date of revision:
Publication status: Published as: Bhar, R. and Chiarella, C., 1997, "Transformation of Heath-Jarrow-Morton models to Markovian systems", The European Journal of Finance, 3(1), ,1-26.
Handle: RePEc:uts:wpaper:53
Contact details of provider: Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.uts.edu.au/about/uts-business-school/finance

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ram Bhar & Carl Chiarella, 1995. "The Estimation of the Heath-Jarrow-Morton Model by Use of Kalman Filtering Techniques," Working Paper Series 54, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  2. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
  3. Andrew Carverhill, 1994. "When Is The Short Rate Markovian?," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 305-312.
  4. Amin, Kaushik I. & Morton, Andrew J., 1994. "Implied volatility functions in arbitrage-free term structure models," Journal of Financial Economics, Elsevier, vol. 35(2), pages 141-180, April.
  5. Andrew W. Lo, . "Maximum Likelihood Estimation of Generalized Ito Processes with Discretely Sampled Data," Rodney L. White Center for Financial Research Working Papers 15-86, Wharton School Rodney L. White Center for Financial Research.
  6. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  7. Flesaker, Bjorn, 1993. "Testing the Heath-Jarrow-Morton/Ho-Lee Model of Interest Rate Contingent Claims Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(04), pages 483-495, December.
  8. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
  9. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-29, December.
  10. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-92.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uts:wpaper:53. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.