IDEAS home Printed from https://ideas.repec.org/a/oup/revfin/v5y2001i3p201-237..html
   My bibliography  Save this article

Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis

Author

Listed:
  • Frank De Jong
  • Joost Driessen
  • Antoon Pelsser

Abstract

We empirically compare Libor and Swap Market Models for the pricing of interest rate derivatives, using panel data on prices of US caplets and swaptions. A Libor Market Model can directly be calibrated to observed prices of caplets, whereas a Swap Market Model is calibrated to a certain set of swaption prices. For both models we analyze how well they price caplets and swaptions that were not used for calibration. We show that the Libor Market Model in general leads to better prediction of derivative prices that were not used for calibration than the Swap Market Model. Also, we find that Market Models with a declining volatility function give much better pricing results than a specification with a constant volatility function. Finally, we find that models that arechosen to exactly match certain derivative prices are overfitted; more parsimonious models lead to better predictions for derivative prices that were not used for calibration. JEL Classification: G12, G13, E43.

Suggested Citation

  • Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
  • Handle: RePEc:oup:revfin:v:5:y:2001:i:3:p:201-237.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1013816921237
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bekaert, Geert & Hodrick, Robert J. & Marshall, David A., 1997. "On biases in tests of the expectations hypothesis of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 44(3), pages 309-348, June.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. Wolfgang Bühler & Marliese Uhrig‐Homburg & Ulrich Walter & Thomas Weber, 1999. "An Empirical Comparison of Forward‐Rate and Spot‐Rate Models for Valuing Interest‐Rate Options," Journal of Finance, American Finance Association, vol. 54(1), pages 269-305, February.
    4. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    8. Longstaff, Francis A & Santa-Clara, Pedro & Schwartz, Eduardo S, 2000. "The Relative Valuation of Caps and Swaptions: Theory and Empirical Evidence," University of California at Los Angeles, Anderson Graduate School of Management qt65f1914p, Anderson Graduate School of Management, UCLA.
    9. Moraleda, Juan M. & Vorst, Ton C. F., 1997. "Pricing American interest rate claims with humped volatility models," Journal of Banking & Finance, Elsevier, vol. 21(8), pages 1131-1157, August.
    10. Boudoukh, Jacob, et al, 1997. "Pricing Mortgage-Backed Securities in a Multifactor Interest Rate Environment: A Multivariate Density Estimation Approach," Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 405-446.
    11. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    12. Flesaker, Bjorn, 1993. "Testing the Heath-Jarrow-Morton/Ho-Lee Model of Interest Rate Contingent Claims Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 483-495, December.
    13. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    14. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    15. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    16. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    17. de Jong, Frank, 2000. "Time Series and Cross-Section Information in Affine Term-Structure Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 300-314, July.
    18. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    20. Amin, Kaushik I. & Morton, Andrew J., 1994. "Implied volatility functions in arbitrage-free term structure models," Journal of Financial Economics, Elsevier, vol. 35(2), pages 141-180, April.
    21. Xiaoliang Zhao & Paul Glasserman, 2000. "Arbitrage-free discretization of lognormal forward Libor and swap rate models," Finance and Stochastics, Springer, vol. 4(1), pages 35-68.
    22. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    23. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carol Alexander & Dimitri Lvov, 2003. "Statistical Properties of Forward Libor Rates," ICMA Centre Discussion Papers in Finance icma-dp2003-03, Henley Business School, University of Reading.
    2. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    3. Mireille Bossy & Rajna Gibson & Francois-Serge Lhabitant & Nathalie Pistre & Denis Talay, 2006. "Model misspecification analysis for bond options and Markovian hedging strategies," Review of Derivatives Research, Springer, vol. 9(2), pages 109-135, September.
    4. Mihaela Tuca, 2009. "Calibration of LIBOR Market Model: Comparison between the Separated and the Approximate Approach," Advances in Economic and Financial Research - DOFIN Working Paper Series 27, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    5. Zühlsdorff, Christian, 2002. "Extended Libor Market Models with Affine and Quadratic Volatility," Bonn Econ Discussion Papers 6/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    6. Frank de Jong & Joost Driessen & Antoon Pelsser, 2004. "On the Information in the Interest Rate Term Structure and Option Prices," Review of Derivatives Research, Springer, vol. 7(2), pages 99-127, August.
    7. Yunbi An & Wulin Suo, 2008. "The compatibility of one‐factor market models in caps and swaptions markets: Evidence from their dynamic hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(2), pages 109-130, February.
    8. Baaquie, Belal E. & Yang, Cao, 2009. "Empirical analysis of quantum finance interest rates models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2666-2681.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    2. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    5. I‐Doun Kuo & Kai‐Li Wang, 2009. "Implied deterministic volatility functions: An empirical test for Euribor options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 319-347, April.
    6. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    7. Frank de Jong & Joost Driessen & Antoon Pelsser, 2004. "On the Information in the Interest Rate Term Structure and Option Prices," Review of Derivatives Research, Springer, vol. 7(2), pages 99-127, August.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Gupta, Anurag & Subrahmanyam, Marti G., 2005. "Pricing and hedging interest rate options: Evidence from cap-floor markets," Journal of Banking & Finance, Elsevier, vol. 29(3), pages 701-733, March.
    10. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    13. Juan M. Moraleda & Ton Vorst, 1996. "The Valuation of Interest Rate Derivatives: Empirical Evidence from the Spanish Market," Tinbergen Institute Discussion Papers 96-170/2, Tinbergen Institute.
    14. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    15. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, December.
    16. Choong Tze Chua & Dean Foster & Krishna Ramaswamy & Robert Stine, 2008. "A Dynamic Model for the Forward Curve," Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 265-310, January.
    17. Yunbi An & Wulin Suo, 2008. "The compatibility of one‐factor market models in caps and swaptions markets: Evidence from their dynamic hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(2), pages 109-130, February.
    18. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    19. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    20. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revfin:v:5:y:2001:i:3:p:201-237.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eufaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.