IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v1y1997i4p293-330.html
   My bibliography  Save this article

LIBOR and swap market models and measures (*)

Author

Listed:
  • Farshid Jamshidian

    () (New Products and Strategic Trading, Sakura Global Capital, 42 New Broad Street, London EC2M 1JX, UK)

Abstract

A self-contained theory is presented for pricing and hedging LIBOR and swap derivatives by arbitrage. Appropriate payoff homogeneity and measurability conditions are identified which guarantee that a given payoff can be attained by a self-financing trading strategy. LIBOR and swap derivatives satisfy this condition, implying they can be priced and hedged with a finite number of zero-coupon bonds, even when there is no instantaneous saving bond. Notion of locally arbitrage-free price system is introduced and equivalent criteria established. Stochastic differential equations are derived for term structures of forward libor and swap rates, and shown to have a unique positive solution when the percentage volatility function is bounded, implying existence of an arbitrage-free model with such volatility specification. The construction is explicit for the lognormal LIBOR and swap "market models", the former following Musiela and Rutkowski (1995). Primary examples of LIBOR and swap derivatives are discussed and appropriate practical models suggested for each.

Suggested Citation

  • Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
  • Handle: RePEc:spr:finsto:v:1:y:1997:i:4:p:293-330 Note: received: January 1996; final version received: May 1997
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00780/papers/7001004/70010293.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    File URL: http://link.springer.de/link/service/journals/00780/papers/7001004/70010293.ps.gz
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heath, David & Jarrow, Robert & Morton, Andrew, 1990. "Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(04), pages 419-440, December.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    3. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    4. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    5. Klaus Sandmann & Dieter Sondermann, 1997. "A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 119-125.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    7. Farshid Jamshidian, 1993. "Option and Futures Evaluation With Deterministic Volatilities," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 149-159.
    8. Giovanni Di Masi & Tomas Björk & Wolfgang Runggaldier & Yuri Kabanov, 1997. "Towards a general theory of bond markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 141-174.
    9. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    10. Jaksa Cvitanić & Ioannis Karatzas, 1996. "HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH-super-2," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165.
    11. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    12. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    13. Farshid Jamshidian, 1994. "Hedging quantos, differential swaps and ratios," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(1), pages 1-20.
    14. K. Sandmann & Sondermann, D., 1993. "A Term Structure Model and the Pricing of Interest Rate Derivative," Discussion Paper Serie B 180, University of Bonn, Germany.
    15. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    16. Cox, John C. & Ingersoll, Jonathan Jr. & Ross, Stephen A., 1981. "The relation between forward prices and futures prices," Journal of Financial Economics, Elsevier, vol. 9(4), pages 321-346, December.
    17. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    LIBOR and swap derivatives; self-financing trading strategies; homogenous payoffs; stochastic differential equations;

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:1:y:1997:i:4:p:293-330. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.