IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v1y1997i4p331-344.html
   My bibliography  Save this article

Option pricing in the presence of natural boundaries and a quadratic diffusion term (*)

Author

Listed:
  • Sven Rady

    (Graduate School of Business, Stanford University, Stanford, CA 94305-5015, USA)

Abstract

This paper uses a probabilistic change-of-numeraire technique to compute closed-form prices of European options to exchange one asset against another when the relative price of the underlying assets follows a diffusion process with natural boundaries and a quadratic diffusion coefficient. The paper shows in particular how to interpret the option price formula in terms of exercise probabilities which are calculated under the martingale measures associated with two specific numeraire portfolios. An application to the pricing of bond options and certain interest rate derivatives illustrates the main results.

Suggested Citation

  • Sven Rady, 1997. "Option pricing in the presence of natural boundaries and a quadratic diffusion term (*)," Finance and Stochastics, Springer, vol. 1(4), pages 331-344.
  • Handle: RePEc:spr:finsto:v:1:y:1997:i:4:p:331-344
    Note: received: January 1996; final version received: December 1996
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00780/papers/7001004/70010331.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    File URL: http://link.springer.de/link/service/journals/00780/papers/7001004/70010331.ps.gz
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sondermann, Dieter, 1987. "Currency options: Hedging and social value," European Economic Review, Elsevier, vol. 31(1-2), pages 246-256.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    4. S. D. Jacka, 1992. "A Martingale Representation Result and an Application to Incomplete Financial Markets," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 239-250, October.
    5. Robert A. Jarrow & Arkadev Chatterjea, 2019. "Interest Rates," World Scientific Book Chapters, in: An Introduction to Derivative Securities, Financial Markets, and Risk Management, chapter 2, pages 22-52, World Scientific Publishing Co. Pte. Ltd..
    6. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    7. Rady, Sven, 1994. "The Direct Approach to Debt Option Pricing," Munich Reprints in Economics 3404, University of Munich, Department of Economics.
    8. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    9. Rubinstein, Mark, 1983. "Displaced Diffusion Option Pricing," Journal of Finance, American Finance Association, vol. 38(1), pages 213-217, March.
    10. Robert Jarrow, 2017. "Derivatives," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 3, pages 19-28, World Scientific Publishing Co. Pte. Ltd..
    11. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    12. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Falkowski, Adrian & Słomiński, Leszek, 2022. "SDEs with two reflecting barriers driven by semimartingales and processes with bounded p-variation," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 164-186.
    2. Alexander Lipton & Andrey Gal & Andris Lasis, 2013. "Pricing of vanilla and first generation exotic options in the local stochastic volatility framework: survey and new results," Papers 1312.5693, arXiv.org.
    3. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    4. Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
    5. U Hou Lok & Yuh-Dauh Lyuu, 2022. "A Valid and Efficient Trinomial Tree for General Local-Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 817-832, October.
    6. Antoine Jacquier & Martin Keller-Ressel, 2015. "Implied volatility in strict local martingale models," Papers 1508.04351, arXiv.org.
    7. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    8. Peter Carr, 2017. "Bounded Brownian Motion," Risks, MDPI, vol. 5(4), pages 1-11, November.
    9. Martin HERDEGEN & Martin SCHWEIZER, 2015. "Economics-Based Financial Bubbles (and Why They Imply Strict Local Martingales)," Swiss Finance Institute Research Paper Series 15-05, Swiss Finance Institute.
    10. Peter Carr & Travis Fisher & Johannes Ruf, 2012. "Why are quadratic normal volatility models analytically tractable?," Papers 1202.6187, arXiv.org, revised Mar 2013.
    11. Zühlsdorff, Christian, 2002. "The Pricing of Derivatives on Assets with Quadratic Volatility," Bonn Econ Discussion Papers 5/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    12. Hui, Cho-Hoi & Lo, Chi-Fai & Liu, Chi-Hei, 2022. "Exchange rate dynamics with crash risk and interventions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 18-37.
    13. Martin Herdegen & Martin Schweizer, 2016. "Strong Bubbles And Strict Local Martingales," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-44, June.
    14. Antje Mahayni, 2003. "Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 521-552.
    15. Erik Schlögl, 2001. "Arbitrage-Free Interpolation in Models of Market Observable Interest Rates," Research Paper Series 71, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Samuel Drapeau & Yunbo Zhang, 2019. "Pricing and Hedging Performance on Pegged FX Markets Based on a Regime Switching Model," Papers 1910.08344, arXiv.org, revised May 2020.
    17. Leif Andersen, 2011. "Option pricing with quadratic volatility: a revisit," Finance and Stochastics, Springer, vol. 15(2), pages 191-219, June.
    18. Christian Zuhlsdorff, 2001. "The pricing of derivatives on assets with quadratic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(4), pages 235-262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    2. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    3. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457, Decembrie.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    6. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    7. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    10. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    11. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    12. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    13. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    14. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.
    15. K. F. Pilz & E. Schlögl, 2013. "A hybrid commodity and interest rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 543-560, March.
    16. José Luis Fernández & Marta Pou & Carlos Vázquez, 2015. "A drift‐free simulation method for pricing commodity derivatives," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(4), pages 536-550, July.
    17. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    18. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    19. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    20. Turan G. Bali, 2007. "An Extreme Value Approach to Estimating Interest-Rate Volatility: Pricing Implications for Interest-Rate Options," Management Science, INFORMS, vol. 53(2), pages 323-339, February.

    More about this item

    Keywords

    Option pricing; bond options; change-of-numeraire technique; diffusion process; quadratic diffusion terms;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:1:y:1997:i:4:p:331-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.