IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v06y2003i05ns0219024903001967.html
   My bibliography  Save this article

Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions

Author

Listed:
  • Antje Mahayni

    (Department of Statistics, University of Bonn, Adenauerallee 24–42, 53113 Bonn, Germany)

Abstract

The following paper focuses on the incompleteness arising from model misspecification combined with trading restrictions. While asset price dynamics are assumed to be continuous time processes, the hedging of contingent claims occurs in discrete time. The trading strategies under consideration are understood to be self-financing with respect to an assumed model which may deviate from the "true" model, thus associating duplication costs with respect to a contingent claim to be hedged. Based on the robustness result of Gaussian hedging strategies, which states that a superhedge is achieved for convex payoff-functions if the "true" asset price volatility is dominated by the assumed one, the error of time discretising these strategies is analysed. It turns out that the time discretisation of Gaussian hedges gives rise to a duplication bias caused by asset price trends, which can be avoided by discretising the hedging model instead of discretising the hedging strategies. Additionally it is shown, that on the one hand binomial strategies incorporate similar robustness features as Gaussian hedges. On the other hand, the distribution of the cost process associated with the binomial hedge coincides, in the limit, with the distribution of the cost process associated with the Gaussian hedge. Together, the last results yield a strong argument in favour of discretising the hedge model instead of time-discretising the strategies.

Suggested Citation

  • Antje Mahayni, 2003. "Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 521-552.
  • Handle: RePEc:wsi:ijtafx:v:06:y:2003:i:05:n:s0219024903001967
    DOI: 10.1142/S0219024903001967
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024903001967
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024903001967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. R. Grannan & G. H. Swindle, 1996. "Minimizing Transaction Costs Of Option Hedging Strategies," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 341-364, October.
    2. Bergman, Yaacov Z & Grundy, Bruce D & Wiener, Zvi, 1996. "General Properties of Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1573-1610, December.
    3. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    4. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
    5. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    6. Bernard Bensaid & Jean‐Philippe Lesne & Henri Pagès & José Scheinkman, 1992. "Derivative Asset Pricing With Transaction Costs1," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 63-86, April.
    7. Darrell Duffie & Philip Protter, 1992. "From Discrete‐ to Continuous‐Time Finance: Weak Convergence of the Financial Gain Process1," Mathematical Finance, Wiley Blackwell, vol. 2(1), pages 1-15, January.
    8. Jean-Paul Laurent & Huyen Pham, 1999. "Dynamic programming and mean-variance hedging," Post-Print hal-03675953, HAL.
    9. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "General Properties of Option Prices (Revision of 11-95) (Reprint 058)," Rodney L. White Center for Financial Research Working Papers 1-96, Wharton School Rodney L. White Center for Financial Research.
    10. Rudiger Frey & Daniel Sommer, 1996. "A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 295-317.
    11. Martin Schweizer & Christophe Stricker & Freddy Delbaen & Pascale Monat & Walter Schachermayer, 1997. "Weighted norm inequalities and hedging in incomplete markets," Finance and Stochastics, Springer, vol. 1(3), pages 181-227.
    12. Toft, Klaus Bjerre, 1996. "On the Mean-Variance Tradeoff in Option Replication with Transactions Costs," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(2), pages 233-263, June.
    13. He, Hua, 1990. "Convergence from Discrete- to Continuous-Time Contingent Claims Prices," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 523-546.
    14. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
    15. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    16. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    17. Martin Schweizer & HuyËn Pham & (*), Thorsten RheinlÄnder, 1998. "Mean-variance hedging for continuous processes: New proofs and examples," Finance and Stochastics, Springer, vol. 2(2), pages 173-198.
    18. Boyle, Phelim P. & Emanuel, David, 1980. "Discretely adjusted option hedges," Journal of Financial Economics, Elsevier, vol. 8(3), pages 259-282, September.
    19. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    20. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    21. Sven Rady, 1997. "Option pricing in the presence of natural boundaries and a quadratic diffusion term (*)," Finance and Stochastics, Springer, vol. 1(4), pages 331-344.
    22. Antje Dudenhausen & Erik Schlögl & Lutz Schlögl, 1999. "Robustness of Gaussian Hedges and the Hedging of Fixed Income Derivatives," Research Paper Series 19, Quantitative Finance Research Centre, University of Technology, Sydney.
    23. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    2. Branger, Nicole & Mahayni, Antje, 2006. "Tractable hedging: An implementation of robust hedging strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 1937-1962, November.
    3. Chen, An, 2005. "Loss Analysis of a Life Insurance Company Applying Discrete-time Risk-minimizing Hedging Strategies," Bonn Econ Discussion Papers 19/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    4. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branger, Nicole & Mahayni, Antje, 2006. "Tractable hedging: An implementation of robust hedging strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 1937-1962, November.
    2. Nicole Branger & Antje Mahayni, 2011. "Tractable hedging with additional hedge instruments," Review of Derivatives Research, Springer, vol. 14(1), pages 85-114, April.
    3. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. repec:dau:papers:123456789/5374 is not listed on IDEAS
    6. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    7. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    8. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    9. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    10. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    11. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    12. Mykland, Per Aslak, 2019. "Combining statistical intervals and market prices: The worst case state price distribution," Journal of Econometrics, Elsevier, vol. 212(1), pages 272-285.
    13. Ostermark, Ralf, 1998. "Call option pricing and replication under economic friction," European Journal of Operational Research, Elsevier, vol. 108(1), pages 184-195, July.
    14. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2003. "A Comparison of q-optimal Option Prices in a Stochastic Volatility Model with Correlation," OFRC Working Papers Series 2003mf02, Oxford Financial Research Centre.
    15. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    16. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    17. Constantinides, George M. & Perrakis, Stylianos, 2002. "Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1323-1352, July.
    18. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    19. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2005. "A Comparison of Option Prices Under Different Pricing Measures in a Stochastic Volatility Model with Correlation," Review of Derivatives Research, Springer, vol. 8(1), pages 5-25, June.
    20. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    21. Perrakis, Stylianos & Lefoll, Jean, 2000. "Option pricing and replication with transaction costs and dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1527-1561, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:06:y:2003:i:05:n:s0219024903001967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.