IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Pricing and hedging derivative securities in markets with uncertain volatilities

Listed author(s):
  • M. Avellaneda
  • A. Levy
  • A. ParAS
Registered author(s):

    We present a model for pricing and hedging derivative securities and option portfolios in an environment where the volatility is not known precisely, but is assumed instead to lie between two extreme values σminand σmax. These bounds could be inferred from extreme values of the implied volatilities of liquid options, or from high-low peaks in historical stock- or option-implied volatilities. They can be viewed as defining a confidence interval for future volatility values. We show that the extremal non-arbitrageable prices for the derivative asset which arise as the volatility paths vary in such a band can be described by a non-linear PDE, which we call the Black-Scholes-Barenblatt equation. In this equation, the 'pricing' volatility is selected dynamically from the two extreme values, σmin, σmax, according to the convexity of the value-function. A simple algorithm for solving the equation by finite-differencing or a trinomial tree is presented. We show that this model captures the importance of diversification in managing derivatives positions. It can be used systematically to construct efficient hedges using other derivatives in conjunction with the underlying asset.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

    Volume (Year): 2 (1995)
    Issue (Month): 2 ()
    Pages: 73-88

    in new window

    Handle: RePEc:taf:apmtfi:v:2:y:1995:i:2:p:73-88
    DOI: 10.1080/13504869500000005
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:2:y:1995:i:2:p:73-88. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.