IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v2y1992i2p63-86.html
   My bibliography  Save this article

Derivative Asset Pricing With Transaction Costs

Author

Listed:
  • Bernard Bensaid
  • Jean-Philippe Lesne
  • Henri Pagès
  • José Scheinkman

Abstract

In the modern theory of finance, the valuation of derivative assets is commonly based on a replication argument. When there are transaction costs, this argument is no longer valid. In this paper, we try to address the general problem of finding the optimal portfolio among those which dominate a given derivative asset at maturity. We derive an interval for its price. the upper bound is the minimum amount one has to invest initially in order to obtain proceeds at least as valuable as the derivative asset. the lower bound is the maximum amount one can borrow initially against the proceeds of the derivative asset. We show that, in some instances, this interval may be strictly bounded above by the price of the replicating strategy. Prima facie, the cost of a dominating strategy should appear to be higher than that of the replicating one. But because trading is costly, it may pay to weigh the benefits of replication against those of potential savings on transaction costs. Copyright 1992 Blackwell Publishers.

Suggested Citation

  • Bernard Bensaid & Jean-Philippe Lesne & Henri Pagès & José Scheinkman, 1992. "Derivative Asset Pricing With Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 63-86.
  • Handle: RePEc:bla:mathfi:v:2:y:1992:i:2:p:63-86
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9965.1992.tb00039.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert A. Jarrow & Dilip B. Madan, 1997. "Is Mean-Variance Analysis Vacuous: Or was Beta Still Born?," Review of Finance, European Finance Association, vol. 1(1), pages 15-30.
    2. Kandel, Shmuel & Stambaugh, Robert F, 1989. "A Mean-Variance Framework for Tests of Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, pages 125-156.
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    4. Sharpe, William F, 1991. " Capital Asset Prices with and without Negative Holdings," Journal of Finance, American Finance Association, vol. 46(2), pages 489-509, June.
    5. Paolo Ghirardato & Massimo Marinacci, 2001. "Risk, Ambiguity, and the Separation of Utility and Beliefs," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 864-890, November.
    6. Thomas J. Sargent & LarsPeter Hansen, 2001. "Robust Control and Model Uncertainty," American Economic Review, American Economic Association, pages 60-66.
    7. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    8. Mark Britten-Jones, 1999. "The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    9. Maccheroni, Fabio & Marinacci, Massimo & Rustichini, Aldo, 2006. "Dynamic variational preferences," Journal of Economic Theory, Elsevier, pages 4-44.
    10. Bigelow, John Payne, 1993. "Consistency of mean-variance analysis and expected utility analysis : A complete characterization," Economics Letters, Elsevier, vol. 43(2), pages 187-192.
    11. MacKinlay, A Craig & Richardson, Matthew P, 1991. " Using Generalized Method of Moments to Test Mean-Variance Efficiency," Journal of Finance, American Finance Association, vol. 46(2), pages 511-527, June.
    12. Domenico Menicucci, 2003. "Optimal two-object auctions with synergies," Review of Economic Design, Springer;Society for Economic Design, pages 143-164.
    13. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    14. Rose-Anne Dana, 2005. "A Representation Result For Concave Schur Concave Functions," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 613-634.
    15. Kandel, Shmuel & Stambaugh, Robert F, 1989. "A Mean-Variance Framework for Tests of Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, pages 125-156.
    16. Fabio Maccheroni & Massimo Marinacci, 2004. "A strong law of large numbers for capacities," ICER Working Papers - Applied Mathematics Series 28-2004, ICER - International Centre for Economic Research.
    17. Dybvig, Philip H & Ingersoll, Jonathan E, Jr, 1982. "Mean-Variance Theory in Complete Markets," The Journal of Business, University of Chicago Press, vol. 55(2), pages 233-251, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:2:y:1992:i:2:p:63-86. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.