IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v3y1996i4p295-317.html
   My bibliography  Save this article

A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates

Author

Listed:
  • Rudiger Frey
  • Daniel Sommer

Abstract

This paper deals with the valuation and the hedging of non-path-dependent European options on one or several underlying assets in a model of an international economy allowing for both, interest rate risk and exchange rate risk. Using martingale theory and, in particular, the change of numeraire technique we provide a unified and easily applicable approach to pricing and hedging exchange options on stocks, bonds, futures, interest rates and exchange rates. We also cover the pricing and hedging of compound exchange options.

Suggested Citation

  • Rudiger Frey & Daniel Sommer, 1996. "A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 295-317.
  • Handle: RePEc:taf:apmtfi:v:3:y:1996:i:4:p:295-317
    DOI: 10.1080/13504869600000014
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504869600000014
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504869600000014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 31, July-Dece.
    2. Fabio Mercurio, 2005. "Pricing inflation-indexed derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 289-302.
    3. Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
    4. Ernst Eberlein & Nataliya Koval, 2006. "A cross-currency Levy market model," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 465-480.
    5. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    6. Antje Mahayni, 2003. "Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 521-552.
    7. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2007, January-A.
    8. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    9. Antje B. Mahayni & Klaus Sandmann, 2008. "Return Guarantees with Delayed Payment," German Economic Review, Verein für Socialpolitik, vol. 9(2), pages 207-231, May.
    10. repec:bla:germec:v:9:y:2008:i::p:207-231 is not listed on IDEAS
    11. Antje Dudenhausen & Erik Schlögl & Lutz Schlögl, 1999. "Robustness of Gaussian Hedges and the Hedging of Fixed Income Derivatives," Research Paper Series 19, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. A. Pelsser, 2003. "Mathematical foundation of convexity correction," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 59-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:3:y:1996:i:4:p:295-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.