IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v19y2012i1p1-35.html
   My bibliography  Save this article

On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates

Author

Listed:
  • Lech A. Grzelak
  • Cornelis W. Oosterlee

Abstract

We construct multi-currency models with stochastic volatility (SV) and correlated stochastic interest rates with a full matrix of correlations. We first deal with a foreign exchange (FX) model of Heston-type, in which the domestic and foreign interest rates are generated by the short-rate process of Hull--White (Hull, J. and White, A. [1990] Pricing interest-rate derivative securities, Review of Financial Studies , 3, pp. 573--592). We then extend the framework by modelling the interest rate by an SV displaced-diffusion (DD) Libor Market Model (Andersen, L. B. G. and Andreasen, J. [2000] Volatility skews and extensions of the libor market model, Applied Mathematics Finance , 1[7], pp. 1--32), which can model an interest rate smile. We provide semi-closed form approximations which lead to efficient calibration of the multi-currency models. Finally, we add a correlated stock to the framework and discuss the construction, model calibration and pricing of equity--FX--interest rate hybrid pay-offs.

Suggested Citation

  • Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
  • Handle: RePEc:taf:apmtfi:v:19:y:2012:i:1:p:1-35
    DOI: 10.1080/1350486X.2011.570492
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2011.570492
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    4. Rudiger Frey & Daniel Sommer, 1996. "A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 295-317.
    5. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Erik Schlögl, 2001. "Arbitrage-Free Interpolation in Models of Market Observable Interest Rates," Research Paper Series 71, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Alexander van Haastrecht & Antoon Pelsser, 2011. "Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 665-691.
    9. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    10. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    11. Grzelak, Lech & Oosterlee, Kees, 2010. "An Equity-Interest Rate Hybrid Model With Stochastic Volatility and the Interest Rate Smile," MPRA Paper 20574, University Library of Munich, Germany.
    12. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrik Karlsson & Kay F Pilz & Erik Schlogl, 2016. "Calibrating Market Model to Commodity and Interest Rate Risk," Research Paper Series 372, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Lai, Van Son & Parcollet, Mathieu & Lamond, Bernard F., 2014. "The valuation of catastrophe bonds with exposure to currency exchange risk," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 243-252.
    3. Griselda Deelstra & Grégory Rayée, 2013. "Local Volatility Pricing Models for Long-Dated FX Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(4), pages 380-402, September.
    4. Anatoliy Swishchuk & Maksym Tertychnyi & Robert Elliott, 2014. "Pricing Currency Derivatives with Markov-modulated Levy Dynamics," Papers 1402.1953, arXiv.org.
    5. repec:wsi:ijfexx:v:04:y:2017:i:01:n:s242478631750013x is not listed on IDEAS
    6. M. Briani & L. Caramellino & A. Zanette, 2015. "A hybrid tree/finite-difference approach for Heston-Hull-White type models," Papers 1503.03705, arXiv.org, revised Dec 2017.
    7. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Singor, Stefan N. & Grzelak, Lech A. & van Bragt, David D.B. & Oosterlee, Cornelis W., 2013. "Pricing inflation products with stochastic volatility and stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 286-299.
    9. repec:uts:finphd:37 is not listed on IDEAS
    10. Alessandro Gnoatto & Martino Grasselli, 2013. "An analytic multi-currency model with stochastic volatility and stochastic interest rates," Papers 1302.7246, arXiv.org, revised Mar 2013.

    More about this item

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • F3 - International Economics - - International Finance
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:19:y:2012:i:1:p:1-35. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.