IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/7700.html
   My bibliography  Save this paper

A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions

Author

Listed:
  • Fang, Fang
  • Oosterlee, Kees

Abstract

Here we develop an option pricing method for European options based on the Fourier-cosine series, and call it the COS method. The key insight is in the close relation of the characteristic function with the series coefficients of the Fourier-cosine expansion of the density function. In most cases, the convergence rate of the COS method is exponential and the computational complexity is linear. Its range of application covers different underlying dynamics, including L\'evy processes and Heston stochastic volatility model, and various types of option contracts. We will present the method and its applications in two separate parts. The first one is this paper, where we deal with European options in particular. In a follow-up paper we will present its application to options with early-exercise features.

Suggested Citation

  • Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 7700, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:7700
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/7700/1/MPRA_paper_7700.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/8914/4/MPRA_paper_8914.pdf
    File Function: revised version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    2. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Andricopoulos, Ari D. & Widdicks, Martin & Duck, Peter W. & Newton, David P., 2003. "Universal option valuation using quadrature methods," Journal of Financial Economics, Elsevier, vol. 67(3), pages 447-471, March.
    5. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    6. Mark Broadie & Yusaku Yamamoto, 2003. "Application of the Fast Gauss Transform to Option Pricing," Management Science, INFORMS, vol. 49(8), pages 1071-1088, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    option pricing; European options; Fourier-cosine expansion;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:7700. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.