IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v258y2015icp372-387.html
   My bibliography  Save this article

Determining and benchmarking risk neutral distributions implied from option prices

Author

Listed:
  • Salazar Celis, Oliver
  • Liang, Lingzhi
  • Lemmens, Damiaan
  • Tempère, Jacques
  • Cuyt, Annie

Abstract

Risk neutral probability density functions (RNDs) play a central role in assessing models for stock market behavior. However, it remains challenging to distill a realistic estimate for the RND from empirical data. In this work we introduce a novel method to infer a RND estimate from observed option prices. Our method efficiently yields a realistic rational function approximation to the RND, it is flexible w.r.t. the shape of the underlying distribution and robust in the presence of noise. To show this, we first investigate how well a method can actually retrieve a known distribution from noisy option prices. Then we consider real market data and show how our method can be used to derive a single continuously differentiable RND estimate from empirical call and put option price data.

Suggested Citation

  • Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
  • Handle: RePEc:eee:apmaco:v:258:y:2015:i:c:p:372-387
    DOI: 10.1016/j.amc.2015.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315001642
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosowski, Robert & Neftci, Salih N., 2014. "Principles of Financial Engineering," Elsevier Monographs, Elsevier, edition 3, number 9780123869685.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    4. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    5. Jean-Baptiste Monnier, 2013. "Technical report : Risk-neutral density recovery via spectral analysis," Papers 1302.2567, arXiv.org.
    6. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    7. Cassio Neri & Lorenz Schneider, 2012. "Maximum entropy distributions inferred from option portfolios on an asset," Finance and Stochastics, Springer, vol. 16(2), pages 293-318, April.
    8. Glatzer, Ernst & Scheicher, Martin, 2003. "Modelling the implied probability of stock market movements," Working Paper Series 212, European Central Bank.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Andersson, Magnus & Lomakka, Magnus, 2005. "Evaluating implied RNDs by some new confidence interval estimation techniques," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1535-1557, June.
    11. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    12. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. repec:oup:ecpoli:v:12:y:1997:i:24:p:53-89 is not listed on IDEAS
    15. Weiyu Guo, 2001. "Maximum Entropy in Option Pricing: A Convex‐Spline Smoothing Method," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(9), pages 819-832, September.
    16. L. Z.J. Liang & D. Lemmens & J. Tempere, 2010. "Generalized pricing formulas for stochastic volatility jump diffusion models applied to the exponential Vasicek model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 75(3), pages 335-342, June.
    17. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    18. L. Z. J. Liang & D. Lemmens & J. Tempere, 2010. "Generalized pricing formulas for stochastic volatility jump diffusion models applied to the exponential Vasicek model," Papers 1011.1175, arXiv.org.
    19. Xiaoquan Liu, 2007. "Bid-ask spread, strike prices and risk-neutral densities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(11), pages 887-900.
    20. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    21. Rama CONT, 1998. "Beyond implied volatility: extracting information from option prices," Finance 9804002, University Library of Munich, Germany.
    22. Bhupinder Bahra, 1997. "Implied risk-neutral probability density functions from option prices: theory and application," Bank of England working papers 66, Bank of England.
    23. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    24. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    3. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    4. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    5. Seung Hwan Lee, 2014. "Estimation of risk-neutral measures using quartic B-spline cumulative distribution functions with power tails," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1857-1879, October.
    6. Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.
    7. Xiaoquan Liu, 2007. "Bid-ask spread, strike prices and risk-neutral densities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(11), pages 887-900.
    8. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    9. Vahamaa, Sami, 2005. "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB," Journal of Economics and Business, Elsevier, vol. 57(1), pages 23-38.
    10. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    11. Vladimir Zdorovenin & Jacques Pézier, 2011. "Does Information Content of Option Prices Add Value for Asset Allocation?," ICMA Centre Discussion Papers in Finance icma-dp2011-03, Henley Business School, Reading University.
    12. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    13. Lina M. Cortés & Javier Perote & Andrés Mora-Valencia, 2017. "Implicit probability distribution for WTI options: The Black Scholes vs. the semi-nonparametric approach," Documentos de Trabajo CIEF 015923, Universidad EAFIT.
    14. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    15. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Expected Prices of Contingent Claims," Papers 2006.15312, arXiv.org, revised Sep 2020.
    16. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    17. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    18. Datta, Deepa Dhume & Londono, Juan M. & Ross, Landon J., 2017. "Generating options-implied probability densities to understand oil market events," Energy Economics, Elsevier, vol. 64(C), pages 440-457.
    19. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    20. Duca, Ioana Andreea & Ruxanda, Gheorghe, 2013. "A View on the Risk-Neutral Density Forecasting of the Dax30 Returns," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 101-114, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:258:y:2015:i:c:p:372-387. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.