IDEAS home Printed from https://ideas.repec.org/p/liv/livedp/200510.html
   My bibliography  Save this paper

Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options

Author

Listed:
  • Ruijun Bu

    () (Management School, University of Liverpool, UK)

  • Kaddour Hadri

    (Management School, University of Liverpool, UK)

Abstract

This paper examines the ability of two recent approaches to estimate implied risk neutral probability density functions (RNDs) - the smoothed implied volatility smile method (SML) and the density functionals based on the confluent hypergeometric functions (DFCH) from the prices of European-style options. A Monte Carlo experiment is conducted to compare the capability of the two techniques to recover simulated distributions based on Heston's (1993) stochastic volatility model. The paper investigates the accuracy and stability of the two methods via two categories of estimated summary statistics. We find that while the SML method outperforms the DFCH method for the summary statistics which are sensitive to the tails of the distribution, the DFCH method dominates the SML method for the summary statistics that are less sensitive to outliers. Due to the lack of observations in the tails when estimating RNDs, we feel that the most appropriate measures for comparing the two methods are the ones less sensitive to extreme values. In this sense, the DFCH method seems to be more appealing. We also apply the two methods via an empirical application.

Suggested Citation

  • Ruijun Bu & Kaddour Hadri, 2005. "Estimating the Risk Neutral Probability Density Functions Natural Spline versus Hypergeometric Approach Using European Style Options," Working Papers 200510, University of Liverpool, Department of Economics.
  • Handle: RePEc:liv:livedp:200510
    as

    Download full text from publisher

    File URL: http://www.liv.ac.uk/managementschool/research/working%20papers/wp200510.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soderlind, Paul & Svensson, Lars, 1997. "New techniques to extract market expectations from financial instruments," Journal of Monetary Economics, Elsevier, vol. 40(2), pages 383-429, October.
    2. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    3. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    4. Karim Abadir, 1999. "An introduction to hypergeometric functions for economists," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 287-330.
    5. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.
    6. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
    7. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    8. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    9. Soderlind, Paul, 2000. "Market Expectations in the UK before and after the ERM Crisis," Economica, London School of Economics and Political Science, vol. 67(265), pages 1-18, February.
    10. Bhupinder Bahra, 1997. "Implied risk-neutral probability density functions from option prices: theory and application," Bank of England working papers 66, Bank of England.
    11. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    12. María C. Manzano & Isabel Sánchez, 1998. "Indicators of Short-Term Interest Rate Expectations. The Information Contained in the Options Market," Working Papers 9816, Banco de España;Working Papers Homepage.
    13. Allan M. Malz, 1997. "Option-implied probability distributions and currency excess returns," Staff Reports 32, Federal Reserve Bank of New York.
    14. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    15. Abadir, Karim M. & Rockinger, Michael, 2003. "Density Functionals, With An Option-Pricing Application," Econometric Theory, Cambridge University Press, vol. 19(5), pages 778-811, October.
    16. Peter A. Abken & Dilip B. Madan & Buddhavarapu Sailesh Ramamurtie, 1996. "Estimation of risk-neutral and statistical densities by Hermite polynomial approximation: with an application to Eurodollar futures options," FRB Atlanta Working Paper 96-5, Federal Reserve Bank of Atlanta.
    17. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    18. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    19. René Lalonde, 1999. "The Information Content of Interest Rate Futures Options," Staff Working Papers 99-15, Bank of Canada.
    20. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    21. Panigirtzoglou, Nikolaos & Skiadopoulos, George, 2004. "A new approach to modeling the dynamics of implied distributions: Theory and evidence from the S&P 500 options," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1499-1520, July.
    22. Neuhaus, Holger, 1995. "The information content of derivatives for monetary policy: Implied volatilities and probabilities," Discussion Paper Series 1: Economic Studies 1995,03e, Deutsche Bundesbank.
    23. Robert R. Bliss & Nikolaos Panigirtzoglou, 2004. "Option-Implied Risk Aversion Estimates," Journal of Finance, American Finance Association, vol. 59(1), pages 407-446, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Robert R Bliss & Nikolaos Panigirtzoglou, 2000. "Testing the stability of implied probability density functions," Bank of England working papers 114, Bank of England.
    3. Marie Briere, 2006. "Market Reactions to Central Bank Communication Policies :Reading Interest Rate Options Smiles," Working Papers CEB 38, ULB -- Universite Libre de Bruxelles.
    4. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    5. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    6. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    7. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    8. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    9. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    10. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    11. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    12. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    13. Halil Ibrahim Aydin & Ahmet Degerli & Pinar Ozlu, 2010. "Recovering Risk-Neutral Densities from Exchange Rate Options: Evidence in Turkey (Kur Opsiyonlarindan Riske Duyarsiz Yogunluk Fonksiyonu Cikarimi: Turkiye Ornegi)," Working Papers 1003, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    14. Vahamaa, Sami, 2005. "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB," Journal of Economics and Business, Elsevier, vol. 57(1), pages 23-38.
    15. Marie Brière & Kamal Chancari, 2004. "Perception des risques sur les marchés, construction d'un indice élaboré à partir des smiles d'options et test de stratégies," Revue d'économie politique, Dalloz, vol. 114(4), pages 527-555.
    16. Josep Puigvert-Gutiérrez & Rupert Vincent-Humphreys, 2012. "A Quantitative Mirror on the Euribor Market Using Implied Probability Density Functions," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 2(1), pages 1-31, June.
    17. Jukka Sihvonen & Sami Vähämaa, 2014. "Forward‐Looking Monetary Policy Rules and Option‐Implied Interest Rate Expectations," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(4), pages 346-373, April.
    18. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    19. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    20. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.

    More about this item

    Keywords

    Risk-neutral density; Smoothed implied volatility smile; Point Conversion; Natural spline; Hypergeometric functions;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:liv:livedp:200510. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rachel Slater). General contact details of provider: https://edirc.repec.org/data/mslivuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.