IDEAS home Printed from https://ideas.repec.org/p/exe/wpaper/9510.html

An Introduction to Hypergeometric Functions for Economists

Author

Listed:
  • Abadir, Karim

Abstract

Hypergeometric functions are a generalization of exponential functions. They are explicit, computable functions that can also be manipulated analytically. The functions and series we use in quantitative economics are all special cases of them. In this paper, a unified approach to hypergeometic functions is given. As a result, some potentially useful general applications emerge such as in statistical distribution theory, applied econonometrics and economic theory. The greatest benefit from using these functions stems from the fact that they provide the parsimonious explicit (and interpretable) solutions to a wide range of general problems.

Suggested Citation

  • Abadir, Karim, 1995. "An Introduction to Hypergeometric Functions for Economists," Discussion Papers 9510, University of Exeter, Department of Economics.
  • Handle: RePEc:exe:wpaper:9510
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exe:wpaper:9510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sebastian Kripfganz (email available below). General contact details of provider: https://edirc.repec.org/data/deexeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.