IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Pricing bounds for discrete arithmetic Asian options under Lévy models

  • Lemmens, D.
  • Liang, L.Z.J.
  • Tempere, J.
  • De Schepper, A.
Registered author(s):

    Analytical bounds for Asian options are almost exclusively available in the Black–Scholes framework. In this paper we derive bounds for the price of a discretely monitored arithmetic Asian option when the underlying asset follows an arbitrary Lévy process. Explicit formulas are given for Kou’s model, Merton’s model, the normal inverse Gaussian model, the CGMY model and the variance gamma model. The results are compared with the comonotonic upper bound, existing numerical results, Monte carlo simulations and in the case of the variance gamma model with an existing lower bound. The method outlined here provides lower and upper bounds that are quick to evaluate, and more accurate than existing bounds.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110006539
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 389 (2010)
    Issue (Month): 22 ()
    Pages: 5193-5207

    as
    in new window

    Handle: RePEc:eee:phsmap:v:389:y:2010:i:22:p:5193-5207
    Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Mantegna, Rosario N & Palágyi, Zoltán & Stanley, H.Eugene, 1999. "Applications of statistical mechanics to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 216-221.
    2. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    3. Vanduffel, Steven & Shang, Zhaoning & Henrard, Luc & Dhaene, Jan & Valdez, Emiliano A., 2008. "Analytic bounds and approximations for annuities and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1109-1117, June.
    4. D. Lemmens & M. Wouters & J. Tempere & S. Foulon, 2008. "A path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models," Papers 0806.0932, arXiv.org.
    5. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Marco Raberto & Enrico Scalas & Gianaurelio Cuniberti & Massimo Riani, 1999. "Volatility in the Italian Stock Market: an Empirical Study," Papers cond-mat/9903221, arXiv.org.
    7. Enrico Scalas & Rudolf Gorenflo & Francesco Mainardi, 2000. "Fractional calculus and continuous-time finance," Papers cond-mat/0001120, arXiv.org.
    8. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    9. Mariani, M.C. & Liu, Y., 2007. "Normalized truncated Levy walks applied to the study of financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 590-598.
    10. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    11. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    12. H. Albrecher & P. A. Mayer & W. Schoutens, 2008. "General Lower Bounds for Arithmetic Asian Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 123-149.
    13. Fusai, Gianluca & Meucci, Attilio, 2008. "Pricing discretely monitored Asian options under Levy processes," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2076-2088, October.
    14. Erik Van der Straeten & Christian Beck, 2009. "Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence," Papers 0901.2271, arXiv.org, revised Sep 2009.
    15. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    16. Linetsky, Vadim, 1998. "The Path Integral Approach to Financial Modeling and Options Pricing," Computational Economics, Society for Computational Economics, vol. 11(1-2), pages 129-63, April.
    17. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    18. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375.
    19. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    20. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    21. Nielsen, J. Aase & Sandmann, Klaus, 2003. "Pricing Bounds on Asian Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(02), pages 449-473, June.
    22. Levy, Edmond, 1992. "Pricing European average rate currency options," Journal of International Money and Finance, Elsevier, vol. 11(5), pages 474-491, October.
    23. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    24. Sergio Da Silva, 2004. "Exponentially Damped Levy Flights," Finance 0406002, EconWPA.
    25. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    26. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(03), pages 377-389, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:22:p:5193-5207. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.