IDEAS home Printed from
   My bibliography  Save this article

Analytic bounds and approximations for annuities and Asian options


  • Vanduffel, Steven
  • Shang, Zhaoning
  • Henrard, Luc
  • Dhaene, Jan
  • Valdez, Emiliano A.


Even in case of the Brownian motion as most natural rate of return model it appears too difficult to obtain analytic expressions for most risk measures of constant continuous annuities. In literature the so-called comonotonic approximations have been proposed but these still require the evaluation of integrals. In this paper we show that these integrals can sometimes be computed, and we obtain explicit approximations for some popular risk measures for annuities. Next, we show how these results can be used to obtain fully analytic expressions for lower and upper bounds for the price of a continuously sampled European-style Asian option with fixed exercise price. These analytic lower bound prices are as sharp as those from [Rogers, L.C.G., Shi, Z., 1995. The value of an Asian option. J. Appl. Probab. 32, 1077-1088], if not sharper, but in contrast do not require any longer the evaluation of a two-dimensional or a one-dimensional integral.

Suggested Citation

  • Vanduffel, Steven & Shang, Zhaoning & Henrard, Luc & Dhaene, Jan & Valdez, Emiliano A., 2008. "Analytic bounds and approximations for annuities and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1109-1117, June.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:1109-1117

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Huang, H. & Milevsky, M. A. & Wang, J., 2004. "Ruined moments in your life: how good are the approximations?," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 421-447, June.
    2. De Schepper, A. & Teunen, M. & Goovaerts, M., 1994. "An analytical inversion of a Laplace transform related to annuities certain," Insurance: Mathematics and Economics, Elsevier, vol. 14(1), pages 33-37, April.
    3. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    4. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    5. Vorst, Ton, 1992. "Prices and hedge ratios of average exchange rate options," International Review of Financial Analysis, Elsevier, vol. 1(3), pages 179-193.
    6. Nielsen, J. Aase & Sandmann, Klaus, 2003. "Pricing Bounds on Asian Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(02), pages 449-473, June.
    7. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    2. Pagnoncelli, Bernardo K. & Vanduffel, Steven, 2012. "A provisioning problem with stochastic payments," European Journal of Operational Research, Elsevier, vol. 221(2), pages 445-453.
    3. repec:bla:jrinsu:v:84:y:2017:i:3:p:923-959 is not listed on IDEAS
    4. repec:spr:finsto:v:21:y:2017:i:3:d:10.1007_s00780-017-0328-4 is not listed on IDEAS
    5. Dan Pirjol & Lingjiong Zhu, 2016. "Discrete Sums of Geometric Brownian Motions, Annuities and Asian Options," Papers 1609.07558,
    6. Pirjol, Dan & Zhu, Lingjiong, 2016. "Discrete sums of geometric Brownian motions, annuities and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 19-37.
    7. Feng, Runhuan & Volkmer, Hans W., 2012. "Analytical calculation of risk measures for variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 636-648.
    8. Runhuan Feng & Xiaochen Jing & Jan Dhaene, 2015. "Comonotonic Approximations of Risk Measures for Variable Annuity Guaranteed Benefits with Dynamic Policyholder Behavior," Tinbergen Institute Discussion Papers 15-008/IV/DSF85, Tinbergen Institute.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:1109-1117. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.