IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i1p189-211.html
   My bibliography  Save this article

Prices and sensitivities of Asian options: A survey

Author

Listed:
  • Boyle, Phelim
  • Potapchik, Alexander

Abstract

Asian options are hard to price both analytically and numerically. Even though they have been the focus of much attention in recent years, there is no single technique which is widely accepted to price Asian options for all choices of market parameters. For hedging purposes, the estimation of the price sensitivities is often as important as the evaluation of the prices themselves. This paper provides a survey of current methods for pricing Asian options and computing their sensitivities to the key input parameters. The methods discussed include: Monte Carlo simulation, the finite difference approach and various quasi analytical approaches and approximations. We discuss practical numerical issues that arise in implementing these methods. The paper compares the accuracy and efficiency of the different approaches and offers some general conclusions.

Suggested Citation

  • Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:189-211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00017-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375.
    3. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    4. Jiri Hoogland & Dimitri Neumann, 1999. "Scale invariance and contingent claim pricing," Finance 9907002, EconWPA.
    5. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    6. Daniel Dufresne, 2000. "Laguerre Series for Asian and Other Options," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 407-428.
    7. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    8. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(03), pages 377-389, September.
    9. Steven E. Shreve & Jan Vecer, 2000. "Options on a traded account: Vacation calls, vacation puts and passport options," Finance and Stochastics, Springer, vol. 4(3), pages 255-274.
    10. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    11. Milevsky, Moshe Arye & Posner, Steven E., 1998. "Asian Options, the Sum of Lognormals, and the Reciprocal Gamma Distribution," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(03), pages 409-422, September.
    12. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    13. Levy, Edmond, 1992. "Pricing European average rate currency options," Journal of International Money and Finance, Elsevier, vol. 11(5), pages 474-491, October.
    14. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    15. Montero, Miquel & Kohatsu-Higa, Arturo, 2003. "Malliavin Calculus applied to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 548-570.
    16. Nielsen, J. Aase & Sandmann, Klaus, 2003. "Pricing Bounds on Asian Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(02), pages 449-473, June.
    17. Arturo Kohatsu & Montero Miquel, 2003. "Malliavin calculus in finance," Economics Working Papers 672, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Simon, S. & Goovaerts, M. J. & Dhaene, J., 2000. "An easy computable upper bound for the price of an arithmetic Asian option," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 175-183, May.
    19. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    20. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    2. Jianqiang Sun & Langnan Chen & Shiyin Li, 2013. "A Quasi‐Analytical Pricing Model for Arithmetic Asian Options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(12), pages 1143-1166, December.
    3. Nielsen, J. Aase & Sandmann, Klaus & Schlögl, Erik, 2011. "Equity-linked pension schemes with guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 547-564.
    4. repec:eee:apmaco:v:252:y:2015:i:c:p:229-239 is not listed on IDEAS
    5. Dan Pirjol & Jing Wang & Lingjiong Zhu, 2017. "Short Maturity Forward Start Asian Options in Local Volatility Models," Papers 1710.03160, arXiv.org.
    6. Chuang-Chang Chang & Chueh-Yung Tsao, 2011. "Efficient and accurate quadratic approximation methods for pricing Asian strike options," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 729-748.
    7. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2012. "A general control variate method for option pricing under Lévy processes," European Journal of Operational Research, Elsevier, vol. 221(2), pages 368-377.
    8. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
    9. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    10. Chung, Shing Fung & Wong, Hoi Ying, 2014. "Analytical pricing of discrete arithmetic Asian options with mean reversion and jumps," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 130-140.
    11. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    12. Ewald, Christian-Oliver & Menkens, Olaf & Hung Marten Ting, Sai, 2013. "Asian and Australian options: A common perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1001-1018.
    13. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:189-211. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.