IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v5y2001i2p201-236.html
   My bibliography  Save this article

Applications of Malliavin calculus to Monte-Carlo methods in finance. II

Author

Listed:
  • Eric Fournié

    (PARIBAS Capital Markets, 10, Harewood Avenue, NW1 6AA London, England)

  • Jean-Michel Lasry

    (PARIBAS Capital Markets, 10, Harewood Avenue, NW1 6AA London, England)

  • Pierre-Louis Lions

    () (Ceremade, UMR 9534, Université Paris-Dauphine, Place Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France)

  • Jérôme Lebuchoux

    (PARIBAS Capital Markets, 10, Harewood Avenue, NW1 6AA London, England)

Abstract

This paper is the sequel of Part I [1], where we showed how to use the so-called Malliavin calculus in order to devise efficient Monte-Carlo (numerical) methods for Finance. First, we return to the formulas developed in [1] concerning the "greeks" used in European options, and we answer to the question of optimal weight functional in the sense of minimal variance. Then, we investigate the use of Malliavin calculus to compute conditional expectations. The integration by part formula provides a powerful tool when used in the framework of Monte Carlo simulation. It allows to compute everywhere, on a single set of trajectories starting at one point, solution of general options related PDEs. Our final application of Malliavin calculus concerns the use of Girsanov transforms involving anticipating drifts. We give an example in numerical Finance of such a transform which gives reduction of variance via importance sampling. Finally, we include two appendices that are concerned with the PDE interpretation of the formulas presented in [1] for the delta of a European option and with the connections between the functional dependence of some random variables and their Malliavin derivatives.

Suggested Citation

  • Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
  • Handle: RePEc:spr:finsto:v:5:y:2001:i:2:p:201-236 Note: received: February 1999; final version received: January 2000
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00780/papers/1005002/10050201.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    2. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    3. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Susanne Emmer & Claudia Klüppelberg, 2004. "Optimal portfolios when stock prices follow an exponential Lévy process," Finance and Stochastics, Springer, vol. 8(1), pages 17-44, January.
    6. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    7. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    9. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    10. Efromovich, Sam & Samarov, Alex, 1996. "Asymptotic equivalence of nonparametric regression and white noise model has its limits," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 143-145, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Monte Carlo methods; Malliavin calculus; hedge ratios and greeks; conditional expectations; PDE; anticipative Girsanov transform; functional dependence;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:5:y:2001:i:2:p:201-236. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.