IDEAS home Printed from
   My bibliography  Save this article

Applications of Malliavin calculus to Monte-Carlo methods in finance. II


  • Eric Fournié

    (PARIBAS Capital Markets, 10, Harewood Avenue, NW1 6AA London, England)

  • Jean-Michel Lasry

    (PARIBAS Capital Markets, 10, Harewood Avenue, NW1 6AA London, England)

  • Pierre-Louis Lions

    () (Ceremade, UMR 9534, Université Paris-Dauphine, Place Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France)

  • Jérôme Lebuchoux

    (PARIBAS Capital Markets, 10, Harewood Avenue, NW1 6AA London, England)


This paper is the sequel of Part I [1], where we showed how to use the so-called Malliavin calculus in order to devise efficient Monte-Carlo (numerical) methods for Finance. First, we return to the formulas developed in [1] concerning the "greeks" used in European options, and we answer to the question of optimal weight functional in the sense of minimal variance. Then, we investigate the use of Malliavin calculus to compute conditional expectations. The integration by part formula provides a powerful tool when used in the framework of Monte Carlo simulation. It allows to compute everywhere, on a single set of trajectories starting at one point, solution of general options related PDEs. Our final application of Malliavin calculus concerns the use of Girsanov transforms involving anticipating drifts. We give an example in numerical Finance of such a transform which gives reduction of variance via importance sampling. Finally, we include two appendices that are concerned with the PDE interpretation of the formulas presented in [1] for the delta of a European option and with the connections between the functional dependence of some random variables and their Malliavin derivatives.

Suggested Citation

  • Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
  • Handle: RePEc:spr:finsto:v:5:y:2001:i:2:p:201-236
    Note: received: February 1999; final version received: January 2000

    Download full text from publisher

    File URL:
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Monte Carlo methods; Malliavin calculus; hedge ratios and greeks; conditional expectations; PDE; anticipative Girsanov transform; functional dependence;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:5:y:2001:i:2:p:201-236. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.