IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0001120.html
   My bibliography  Save this paper

Fractional calculus and continuous-time finance

Author

Listed:
  • Enrico Scalas
  • Rudolf Gorenflo
  • Francesco Mainardi

Abstract

In this paper we present a rather general phenomenological theory of tick-by-tick dynamics in financial markets. Many well-known aspects, such as the L\'evy scaling form, follow as particular cases of the theory. The theory fully takes into account the non-Markovian and non-local character of financial time series. Predictions on the long-time behaviour of the waiting-time probability density are presented. Finally, a general scaling form is given, based on the solution of the fractional diffusion equation.

Suggested Citation

  • Enrico Scalas & Rudolf Gorenflo & Francesco Mainardi, 2000. "Fractional calculus and continuous-time finance," Papers cond-mat/0001120, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0001120
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0001120
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9401, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0001120. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.