IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v198y2022icp312-331.html
   My bibliography  Save this article

Binomial tree method for option pricing: Discrete cosine transform approach

Author

Listed:
  • Muroi, Yoshifumi
  • Suda, Shintaro

Abstract

This paper discusses a new pricing method of European options through the binomial tree model using a discrete cosine transform. The discrete cosine transform has been used as a fundamental tool for image compression, including the creation of JPEG files. A discrete cosine transform was also recently used to derive the price of financial options. This method also enables us to derive the option prices using a binomial tree model. Using this approach, we derive the option prices on the classical Black and Scholes, exponential jump–diffusion, and exponential CGMY models. Because we compute the characteristic function numerically, we can derive option prices in various models without knowing the specific form of the characteristic functions. This study can unfold new research areas such as option pricing on various models, including the non-parametric jump and Lévy diffusion models.

Suggested Citation

  • Muroi, Yoshifumi & Suda, Shintaro, 2022. "Binomial tree method for option pricing: Discrete cosine transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 312-331.
  • Handle: RePEc:eee:matcom:v:198:y:2022:i:c:p:312-331
    DOI: 10.1016/j.matcom.2022.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422000854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    2. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    3. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    4. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    5. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    6. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    7. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Yoshifumi Muroi & Ryota Saeki & Shintaro Suda, 2021. "Binomial tree method for option pricing: Discrete Carr and Madan formula approach," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-28, June.
    10. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    12. James Primbs & Muruhan Rathinam & Yuji Yamada, 2007. "Option Pricing with a Pentanomial Lattice Model that Incorporates Skewness and Kurtosis," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Leduc & Kenneth Palmer, 2023. "The Convergence Rate of Option Prices in Trinomial Trees," Risks, MDPI, vol. 11(3), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    2. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    3. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org.
    4. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    5. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    6. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    7. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.
    8. Lorenzo Torricelli, 2016. "Valuation of asset and volatility derivatives using decoupled time-changed Lévy processes," Review of Derivatives Research, Springer, vol. 19(1), pages 1-39, April.
    9. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    10. David S. Bates, 2009. "U.S. Stock Market Crash Risk, 1926-2006," NBER Working Papers 14913, National Bureau of Economic Research, Inc.
    11. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    12. Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
    13. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    14. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2017. "Fluctuation identities with continuous monitoring and their application to price barrier options," Papers 1712.00077, arXiv.org.
    15. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    16. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Orzechowski Arkadiusz, 2018. "Pricing Correlation Options: from the P. Carr And D. Madan Approach to the New Method Based on the Fourier Transform," Economics and Business Review, Sciendo, vol. 4(1), pages 16-28, April.
    18. Xin-Jiang He & Sha Lin, 2022. "An Analytical Approximation Formula for Barrier Option Prices Under the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1413-1425, December.
    19. Philipp Mayer & Natalie Packham & Wolfgang Schmidt, 2015. "Static hedging under maturity mismatch," Finance and Stochastics, Springer, vol. 19(3), pages 509-539, July.
    20. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2017. "Short-Term Market Risks Implied by Weekly Options," Journal of Finance, American Finance Association, vol. 72(3), pages 1335-1386, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:198:y:2022:i:c:p:312-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.