IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v101y2025i1d10.1007_s00186-024-00881-0.html
   My bibliography  Save this article

On asset pricing in a binomial model with fixed and proportional transaction costs, portfolio constraints and dividends

Author

Listed:
  • Esmaeil Babaei

    (The Manchester Metropolitan University)

Abstract

We extend the classical binomial model proposed by Cox, Ross, and Rubinstein for derivative security pricing to encompass both fixed and proportional transaction costs, portfolio constraints including margin requirements, and dividend-paying assets. Our focus is on studying option hedging within this enriched framework. Initially, we establish the existence of a hedging strategy in this context. Subsequently, we determine the optimal hedging strategy and its associated initial cost by decomposing the problem into a sequence of hedging problems. To illustrate our approach, we present a numerical example within a 3-period binomial model.

Suggested Citation

  • Esmaeil Babaei, 2025. "On asset pricing in a binomial model with fixed and proportional transaction costs, portfolio constraints and dividends," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 101(1), pages 29-50, February.
  • Handle: RePEc:spr:mathme:v:101:y:2025:i:1:d:10.1007_s00186-024-00881-0
    DOI: 10.1007/s00186-024-00881-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-024-00881-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-024-00881-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Young Shin & Stoyanov, Stoyan & Rachev, Svetlozar & Fabozzi, Frank J., 2019. "Enhancing binomial and trinomial equity option pricing models," Finance Research Letters, Elsevier, vol. 28(C), pages 185-190.
    2. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    3. Muroi, Yoshifumi & Suda, Shintaro, 2022. "Binomial tree method for option pricing: Discrete cosine transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 312-331.
    4. Edirisinghe, Chanaka & Naik, Vasanttilak & Uppal, Raman, 1993. "Optimal Replication of Options with Transactions Costs and Trading Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 117-138, March.
    5. Ting He & Frank P. A. Coolen & Tahani Coolen-Maturi, 2019. "Nonparametric predictive inference for European option pricing based on the binomial tree model," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1692-1708, October.
    6. Bernard Bensaid & Jean‐Philippe Lesne & Henri Pagès & José Scheinkman, 1992. "Derivative Asset Pricing With Transaction Costs1," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 63-86, April.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Ken Palmer, 2001. "A Note on the Boyle–Vorst Discrete‐Time Option Pricing Model with Transactions Costs," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 357-363, July.
    9. M. Dempster & I. Evstigneev & M. Taksar, 2006. "Asset Pricing and Hedging in Financial Markets with Transaction Costs: An Approach Based on the Von Neumann–Gale Model," Annals of Finance, Springer, vol. 2(4), pages 327-355, October.
    10. Liu, Xiaoran & Ronn, Ehud I., 2020. "Using the binomial model for the valuation of real options in computing optimal subsidies for Chinese renewable energy investments," Energy Economics, Elsevier, vol. 87(C).
    11. Jean-Christophe Breton & Youssef El-Khatib & Jun Fan & Nicolas Privault, 2021. "A q-binomial extension of the CRR asset pricing model," Papers 2104.10163, arXiv.org, revised Feb 2023.
    12. Lukasz Stettner, 2000. "Option Pricing in Discrete‐Time Incomplete Market Models," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 305-321, April.
    13. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    14. Kim, In Joon & Park, Gun Youb, 2006. "An empirical comparison of implied tree models for KOSPI 200 index options," International Review of Economics & Finance, Elsevier, vol. 15(1), pages 52-71.
    15. Zakamouline, Valeri I., 2006. "European option pricing and hedging with both fixed and proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 1-25, January.
    16. Esmaeil Babaei, 2024. "Asset pricing and hedging in financial markets with fixed and proportional transaction costs," Annals of Finance, Springer, vol. 20(2), pages 259-275, June.
    17. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2021. "Market Complete Option Valuation using a Jarrow-Rudd Pricing Tree with Skewness and Kurtosis," Papers 2106.09128, arXiv.org.
    2. Hu, Yuan & Lindquist, W. Brent & Rachev, Svetlozar T. & Shirvani, Abootaleb & Fabozzi, Frank J., 2022. "Market complete option valuation using a Jarrow-Rudd pricing tree with skewness and kurtosis," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    3. Perrakis, Stylianos & Lefoll, Jean, 2000. "Option pricing and replication with transaction costs and dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1527-1561, October.
    4. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    5. Joao Amaro de Matos & Paula Antao, 2000. "Market illiquidity and the Bid-Ask spread of derivatives," Nova SBE Working Paper Series wp386, Universidade Nova de Lisboa, Nova School of Business and Economics.
    6. Alet Roux, 2007. "The fundamental theorem of asset pricing under proportional transaction costs," Papers 0710.2758, arXiv.org.
    7. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    8. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    9. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    10. Jacques, Sébastien & Lai, Van Son & Soumaré, Issouf, 2011. "Synthetizing a debt guarantee: Super-replication versus utility approach," International Review of Financial Analysis, Elsevier, vol. 20(1), pages 27-40, January.
    11. Stefano Baccarin, 2019. "Static use of options in dynamic portfolio optimization under transaction costs and solvency constraints," Working papers 063, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    12. Lai, Tze Leung & Lim, Tiong Wee, 2009. "Option hedging theory under transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 33(12), pages 1945-1961, December.
    13. Perrakis, Stylianos & Lefoll, Jean, 2004. "The American put under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 915-935, February.
    14. Kallio, Markku & Ziemba, William T., 2007. "Using Tucker's theorem of the alternative to simplify, review and expand discrete arbitrage theory," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2281-2302, August.
    15. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    16. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    17. Tokarz, Krzysztof & Zastawniak, Tomasz, 2006. "American contingent claims under small proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 43(1), pages 65-85, December.
    18. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    19. Zhao, Yonggan & Ziemba, William T., 2007. "Hedging errors with Leland's option model in the presence of transaction costs," Finance Research Letters, Elsevier, vol. 4(1), pages 49-58, March.
    20. W. Li & S. Wang, 2009. "Penalty Approach to the HJB Equation Arising in European Stock Option Pricing with Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 279-293, November.

    More about this item

    Keywords

    Binomial model; Self-financing condition; Transaction costs; Hedging; Portfolio constraints; Dividends;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:101:y:2025:i:1:d:10.1007_s00186-024-00881-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.