IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/20620.html
   My bibliography  Save this paper

On The Heston Model with Stochastic Interest Rates

Author

Listed:
  • Grzelak, Lech
  • Oosterlee, Kees

Abstract

We discuss the Heston [Heston-1993] model with stochastic interest rates driven by Hull-White [Hull,White-1996] (HW) or Cox-Ingersoll-Ross [Cox, et al.-1985] (CIR) processes. A so-called volatility compensator is defined which guarantees that the Heston hybrid model with a non-zero correlation between the equity and interest rate processes is properly defined. Two different approximations of the hybrid models are presented in order to obtain the characteristic functions. These approximations admit pricing basic derivative products with Fourier techniques [Carr,Madan-1999; Fang,Oosterlee-2008], and can therefore be used for fast calibration of the hybrid model. The effect of the approximations on the instantaneous correlations and the influence of the correlation between stock and interest rate on the implied volatilities are also discussed.

Suggested Citation

  • Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
  • Handle: RePEc:pra:mprapa:20620
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/20620/1/MPRA_paper_20620.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/24174/1/MPRA_paper_24174.pdf
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    3. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    4. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    5. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Mark Broadie & Yusaku Yamamoto, 2003. "Application of the Fast Gauss Transform to Option Pricing," Management Science, INFORMS, vol. 49(8), pages 1071-1088, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jijfss:v:6:y:2017:i:1:p:3-:d:124327 is not listed on IDEAS
    2. repec:spr:joptap:v:161:y:2014:i:1:d:10.1007_s10957-013-0284-x is not listed on IDEAS
    3. Andrei Cozma & Christoph Reisinger, 2015. "A mixed Monte Carlo and PDE variance reduction method for foreign exchange options under the Heston-CIR model," Papers 1509.01479, arXiv.org, revised Apr 2016.
    4. Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
    5. Ziveyi, Jonathan & Blackburn, Craig & Sherris, Michael, 2013. "Pricing European options on deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 300-311.
    6. Andrei Cozma & Christoph Reisinger, 2015. "Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process," Papers 1601.00919, arXiv.org.
    7. Grzelak, Lech & Oosterlee, Kees, 2010. "An Equity-Interest Rate Hybrid Model With Stochastic Volatility and the Interest Rate Smile," MPRA Paper 20574, University Library of Munich, Germany.
    8. repec:kap:revdev:v:21:y:2018:i:1:d:10.1007_s11147-017-9132-8 is not listed on IDEAS
    9. Roman Horsky & Tilman Sayer, 2015. "Joining The Heston And A Three-Factor Short Rate Model: A Closed-Form Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-17, December.
    10. Andrey Itkin, 2015. "LSV models with stochastic interest rates and correlated jumps," Papers 1511.01460, arXiv.org, revised Nov 2016.
    11. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Pricing Performance in Long-Dated Crude Oil Derivatives: Do Models with Stochastic Interest Rates Matter?," Research Paper Series 367, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Teh Raihana Nazirah Roslan & Wenjun Zhang & Jiling Cao, 2016. "Pricing variance swaps with stochastic volatility and stochastic interest rate under full correlation structure," Papers 1610.09714, arXiv.org.
    13. Long Teng & Matthias Ehrhardt & Michael G√ľnther, 2016. "On The Heston Model With Stochastic Correlation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-25, September.
    14. Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.
    15. Maria Cristina Recchioni & Yu Sun & Gabriele Tedeschi, 2016. "Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model," Working Papers 2016/23, Economics Department, Universitat Jaume I, Castellón (Spain).
    16. Karel in 't Hout & Jari Toivanen, 2015. "Application of Operator Splitting Methods in Finance," Papers 1504.01022, arXiv.org.
    17. M. Briani & L. Caramellino & A. Zanette, 2015. "A hybrid tree/finite-difference approach for Heston-Hull-White type models," Papers 1503.03705, arXiv.org, revised Dec 2017.
    18. Tinne Haentjens & Karel J. in 't Hout, 2011. "ADI finite difference schemes for the Heston-Hull-White PDE," Papers 1111.4087, arXiv.org.
    19. Q. Feng & C. W. Oosterlee, 2014. "Monte Carlo Calculation of Exposure Profiles and Greeks for Bermudan and Barrier Options under the Heston Hull-White Model," Papers 1412.3623, arXiv.org.
    20. Ben-zhang Yang & Jia Yue & Nan-jing Huang, 2017. "Variance swaps under L\'{e}vy process with stochastic volatility and stochastic interest rate in incomplete markets," Papers 1712.10105, arXiv.org, revised Mar 2018.
    21. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    22. repec:taf:quantf:v:17:y:2017:i:6:p:907-925 is not listed on IDEAS
    23. repec:uts:finphd:37 is not listed on IDEAS
    24. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "On a hybrid method using trees and finite-differences for pricing options in complex models," Papers 1603.07225, arXiv.org, revised May 2017.
    25. Alessandro Gnoatto & Martino Grasselli, 2013. "An analytic multi-currency model with stochastic volatility and stochastic interest rates," Papers 1302.7246, arXiv.org, revised Mar 2013.

    More about this item

    Keywords

    Heston-Hull-White; Heston-Cox-Ingersoll-Ross; equity-interest rate hybrid products; stochastic volatility; affine jump diffusion processes.;

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • F3 - International Economics - - International Finance
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20620. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.