IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1596.html
   My bibliography  Save this paper

Simulation-based Estimation of Contingent-claims Prices

Author

Abstract

A new methodology is proposed to estimate theoretical prices of financial contingent-claims whose values are dependent on some other underlying financial assets. In the literature the preferred choice of estimator is usually maximum likelihood (ML). ML has strong asymptotic justification but is not necessarily the best method in finite samples. The present paper proposes instead a simulation-based method that improves the finite sample performance of the ML estimator while maintaining its good asymptotic properties. The methods are implemented and evaluated here in the Black-Scholes option pricing model and in the Vasicek bond pricing model, but have wider applicability. Monte Carlo studies show that the proposed procedures achieve bias reductions over ML estimation in pricing contingent claims. The bias reductions are sometimes accompanied by reductions in variance, leading to significant overall gains in mean squared estimation error. Empirical applications to US treasury bills highlight the differences between the bond prices implied by the simulation-based approach and those delivered by ML. Some consequences for the statistical testing of contingent-claim pricing models are discussed.

Suggested Citation

  • Peter C.B. Phillips & Jun Yu, 2007. "Simulation-based Estimation of Contingent-claims Prices," Cowles Foundation Discussion Papers 1596, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1596
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d15/d1596.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Ball, Clifford A & Torous, Walter N, 1984. "The Maximum Likelihood Estimation of Security Price Volatility: Theory, Evidence, and Application to Option Pricing," The Journal of Business, University of Chicago Press, vol. 57(1), pages 97-112, January.
    3. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(02), pages 231-247, August.
    4. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    5. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    6. Aït-Sahalia, Yacine & Kimmel, Robert L., 2010. "Estimating affine multifactor term structure models using closed-form likelihood expansions," Journal of Financial Economics, Elsevier, vol. 98(1), pages 113-144, October.
    7. Tripathi, Gautam, 2000. "Econometric Methods," Econometric Theory, Cambridge University Press, vol. 16(01), pages 139-142, February.
    8. repec:cup:etheor:v:12:y:1996:i:4:p:597-619 is not listed on IDEAS
    9. Andersen, Torben G., 2000. "Simulation-Based Econometric Methods," Econometric Theory, Cambridge University Press, vol. 16(01), pages 131-138, February.
    10. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
    11. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    12. Yacine Aït-Sahalia, 2001. "Transition Densities For Interest Rate And Other Nonlinear Diffusions," World Scientific Book Chapters,in: Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 1, pages 1-34 World Scientific Publishing Co. Pte. Ltd..
    13. Monfort, Alain, 1996. "A Reappraisal of Misspecified Econometric Models," Econometric Theory, Cambridge University Press, vol. 12(04), pages 597-619, October.
    14. Jamshidian, Farshid, 1989. " An Exact Bond Option Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 205-209, March.
    15. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    16. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    17. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    18. Darrell Duffie & Lasse Heje Pedersen & Kenneth J. Singleton, 2003. "Modeling Sovereign Yield Spreads: A Case Study of Russian Debt," Journal of Finance, American Finance Association, vol. 58(1), pages 119-159, February.
    19. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    20. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    21. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    22. Pierce, James L, 1984. "Did Financial Innovation Hurt the Great Monetarist Experiment?," American Economic Review, American Economic Association, vol. 74(2), pages 392-396, May.
    23. Chiara Monfardini, 1998. "Estimating stochastic volatility models through indirect inference," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 113-128.
    24. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    25. Boyle, Phelim P. & Ananthanarayanan, A. L., 1977. "The impact of variance estimation in option valuation models," Journal of Financial Economics, Elsevier, vol. 5(3), pages 375-387, December.
    26. Phillips, P C B, 1972. "The Structural Estimation of a Stochastic Differential Equation System," Econometrica, Econometric Society, vol. 40(6), pages 1021-1041, November.
    27. Butler, J. S. & Schachter, Barry, 1986. "Unbiased estimation of the Black/Scholes formula," Journal of Financial Economics, Elsevier, vol. 15(3), pages 341-357, March.
    28. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    29. Knight, John L & Satchell, Stephen E., 1997. "Existence of Unbiased Estimators of the Black/Scholes Option Price, Other Derivatives, and Hedge Ratios," Econometric Theory, Cambridge University Press, vol. 13(06), pages 791-807, December.
    30. Peter C. B. Phillips & Jun Yu, 2006. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Development Economics Working Papers 22471, East Asian Bureau of Economic Research.
    31. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    32. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    33. Lo, Andrew W., 1986. "Statistical tests of contingent-claims asset-pricing models : A new methodology," Journal of Financial Economics, Elsevier, vol. 17(1), pages 143-173, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Wei-Lin & Zhang, Wei-Guo & Yao, Zheng & Wang, Xiao-Hui, 2013. "The impact of issuing warrant and debt on behavior of the firm's stock," Economic Modelling, Elsevier, vol. 31(C), pages 635-641.
    2. Liang Jiang & Xiaohu Wang & Jun Yu, 2014. "On Bias in the Estimation of Structural Break Points," Working Papers 22-2014, Singapore Management University, School of Economics.
    3. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    4. Sherrill Shaffer, 2011. "Strategic risk aversion," Applied Financial Economics, Taylor & Francis Journals, vol. 21(13), pages 949-956.
    5. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    6. repec:wly:emjrnl:v:20:y:2017:i:2:p:168-189 is not listed on IDEAS
    7. repec:eee:econom:v:205:y:2018:i:1:p:156-176 is not listed on IDEAS
    8. Cerrato, Mario & Lo, Chia Chun & Skindilias, Konstantinos, 2011. "Adaptive Continuous time Markov Chain Approximation Model to General Jump-Diusions," SIRE Discussion Papers 2011-53, Scottish Institute for Research in Economics (SIRE).
    9. Tore Selland Kleppe & Jun Yu & Hans J. skaug, 2011. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 10-2011, Singapore Management University, School of Economics.
    10. Huang, Shirley J. & Yu, Jun, 2010. "Bayesian analysis of structural credit risk models with microstructure noises," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2259-2272, November.
    11. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    12. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    13. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    14. Mario Cerrato & Chia Chun Lo & Konstantinos Skindilias, 2011. "Adaptive continuous time Markov chain approximation model to general jump-diffusions," Working Papers 2011_16, Business School - Economics, University of Glasgow.
    15. Maria Kyriacou & Peter C. B. Phillips & Francesca Rossi, 2017. "Indirect inference in spatial autoregression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 168-189, June.
    16. repec:taf:jpropr:v:34:y:2017:i:2:p:108-128 is not listed on IDEAS

    More about this item

    Keywords

    Bias reduction; Bond pricing; Indirect inference; Option pricing; Simulation-based estimation;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1596. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.