IDEAS home Printed from
   My bibliography  Save this paper

Adaptive continuous time Markov chain approximation model to general jump-diffusions


  • Mario Cerrato
  • Chia Chun Lo
  • Konstantinos Skindilias


We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).

Suggested Citation

  • Mario Cerrato & Chia Chun Lo & Konstantinos Skindilias, 2011. "Adaptive continuous time Markov chain approximation model to general jump-diffusions," Working Papers 2011_16, Business School - Economics, University of Glasgow.
  • Handle: RePEc:gla:glaewp:2011_16

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    2. Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2007. "Inference for stochastic volatility model using time change transformations," MPRA Paper 5697, University Library of Munich, Germany.
    3. Hideyuki Takamizawa, 2008. "Is Nonlinear Drift Implied by the Short End of the Term Structure?," Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 311-346, January.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    5. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    6. Osnat Stramer & Matthew Bognar & Paul Schneider, 2010. "Bayesian Inference for Discretely Sampled Markov Processes with Closed-Form Likelihood Expansions," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(4), pages 450-480, Fall.
    7. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Igor Halperin & Andrey Itkin, 2013. "USLV: Unspanned Stochastic Local Volatility Model," Papers 1301.4442,, revised Mar 2013.

    More about this item


    Markov Chains; Diffusion Approximation; Transition Density; Jump-Diffusion Approximation; Option Pricing;

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gla:glaewp:2011_16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tedi Racheva). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.