IDEAS home Printed from
   My bibliography  Save this article

Bayesian Inference for Discretely Sampled Markov Processes with Closed-Form Likelihood Expansions


  • Osnat Stramer
  • Matthew Bognar
  • Paul Schneider


This article proposes a new Bayesian Markov chain Monte Carlo (MCMC) methodology for estimation of a wide class of multidimensional jump-diffusion models. Our approach is based on the closed-form (CF) likelihood approximations of Aït-Sahalia (2002, 2008). The CF likelihood approximation does not integrate to 1; it is very close to 1 when in the center of the distribution but can differ markedly from 1 when far in the tails. We propose an MCMC algorithm that addresses the problems that arise when the CF approximation is applied in a Bayesian context. The efficacy of our approach is demonstrated in a simulation study of the Cox--Ingersoll--Ross and Heston models and is applied to two well-known datasets. Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:, Oxford University Press.

Suggested Citation

  • Osnat Stramer & Matthew Bognar & Paul Schneider, 2010. "Bayesian Inference for Discretely Sampled Markov Processes with Closed-Form Likelihood Expansions," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(4), pages 450-480, Fall.
  • Handle: RePEc:oup:jfinec:v:8:y:2010:i:4:p:450-480

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Terence Lim, 2001. "Rationality and Analysts' Forecast Bias," Journal of Finance, American Finance Association, vol. 56(1), pages 369-385, February.
    3. repec:bla:joares:v:38:y:2000:i:1:p:71-101 is not listed on IDEAS
    4. Edwin J. Elton & Martin J. Gruber, 1972. "Earnings Estimates and the Accuracy of Expectational Data," Management Science, INFORMS, vol. 18(8), pages 409-424, April.
    5. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, Elsevier.
    6. Conrad, Jennifer & Cornell, Bradford & Landsman, Wayne R. & Rountree, Brian R., 2006. "How Do Analyst Recommendations Respond to Major News?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(01), pages 25-49, March.
    7. Ferson, Wayne E & Harvey, Campbell R, 1991. "The Variation of Economic Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 385-415, April.
    8. Klein, April, 1990. "A direct test of the cognitive bias theory of share price reversals," Journal of Accounting and Economics, Elsevier, vol. 13(2), pages 155-166, July.
    9. Chen, Qi & Francis, Jennifer & Jiang, Wei, 2005. "Investor learning about analyst predictive ability," Journal of Accounting and Economics, Elsevier, vol. 39(1), pages 3-24, February.
    10. Harrison Hong & Jeffrey D. Kubik & Amit Solomon, 2000. "Security Analysts' Career Concerns and Herding of Earnings Forecasts," RAND Journal of Economics, The RAND Corporation, vol. 31(1), pages 121-144, Spring.
    11. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    12. Fried, Dov & Givoly, Dan, 1982. "Financial analysts' forecasts of earnings : A better surrogate for market expectations," Journal of Accounting and Economics, Elsevier, vol. 4(2), pages 85-107, October.
    13. Brown, Lawrence D & Rozeff, Michael S, 1978. "The Superiority of Analyst Forecasts as Measures of Expectations: Evidence from Earnings," Journal of Finance, American Finance Association, vol. 33(1), pages 1-16, March.
    14. Diamond, Douglas W. & Verrecchia, Robert E., 1981. "Information aggregation in a noisy rational expectations economy," Journal of Financial Economics, Elsevier, vol. 9(3), pages 221-235, September.
    15. Clarke, Jonathan & Ferris, Stephen P. & Jayaraman, Narayanan & Lee, Jinsoo, 2006. "Are Analyst Recommendations Biased? Evidence from Corporate Bankruptcies," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(01), pages 169-196, March.
    16. Harrison Hong & Jeffrey D. Kubik, 2003. "Analyzing the Analysts: Career Concerns and Biased Earnings Forecasts," Journal of Finance, American Finance Association, vol. 58(1), pages 313-351, February.
    17. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fernández-Villaverde, Jesús & Guerrón-Quintana, Pablo & Rubio-Ramírez, Juan F., 2015. "Estimating dynamic equilibrium models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 216-229.
    2. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    3. Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
    4. Cerrato, Mario & Lo, Chia Chun & Skindilias, Konstantinos, 2011. "Adaptive Continuous time Markov Chain Approximation Model to General Jump-Diusions," SIRE Discussion Papers 2011-53, Scottish Institute for Research in Economics (SIRE).
    5. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2010. "Properties of Foreign Exchange Risk Premia," MPRA Paper 21302, University Library of Munich, Germany.
    6. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    7. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    8. Mario Cerrato & Chia Chun Lo & Konstantinos Skindilias, 2011. "Adaptive continuous time Markov chain approximation model to general jump-diffusions," Working Papers 2011_16, Business School - Economics, University of Glasgow.
    9. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    10. Lee, Yoon Dong & Song, Seongjoo & Lee, Eun-Kyung, 2014. "The delta expansion for the transition density of diffusion models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 694-705.
    11. Choi, Seungmoon, 2015. "Explicit form of approximate transition probability density functions of diffusion processes," Journal of Econometrics, Elsevier, vol. 187(1), pages 57-73.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:8:y:2010:i:4:p:450-480. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.